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Abstract

Does artificial intelligence (AI) pose a threat to financial stability? This pa-

per develops a simulation-based framework to study how AI agents behave in

a mutual-fund redemption game with strategic complementarities and multi-

ple equilibria. Different AI technologies, namely Q-learning (QL) algorithms

and large language models (LLMs), generate distinct redemption profiles. QL-

investors coordinate among themselves but exhibit a bias toward excessive early

redemption that amplifies fund fragility. LLM-investors instead internalize the

equilibrium structure of the problem and better align with theoretical predic-

tions. However, their belief heterogeneity weakens coordination, thereby mak-

ing their redemptions less predictable. Thus, our findings highlight that the

design of AI systems is material for financial stability.
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I. Introduction

In ancient Greek tragedy, when a plot reached an impasse, a mechanical crane would

lower actors playing gods onto the stage to impose a resolution, a device later known

as deus ex machina. Two and a half millennia later, our growing reliance on artificial

intelligence (AI) to navigate financial complexity and uncertainty invites a compar-

ison. Will AI become the deus ex machina of modern finance, or will it instead

threaten financial stability? This paper investigates this question.

AI is playing an increasingly central role in modern finance. For example, the

release of a large language model (LLM) by DeepSeek has spurred an AI arms race

amongst other hedge funds and mutual funds in China to automate the processing

of market data and the generation of trading signals (Reuters, 2025). This trend

extends to the retail sector, where industry reports suggest that AI-enabled appli-

cations that autonomously generate financial advice will be the leading source for

investors by 2027 (MIT Sloan, 2024; Deloitte, 2024). The frontier is now shifting

toward fully agentic AI, autonomously executing tasks, adapting to new information,

and coordinating with other systems under minimal human oversight in areas like

fraud detection and transaction management (Nvidia, 2025; Financial Times, 2025).

This clear progression towards more sophisticated autonomous AI raises a central

question: How will these systems behave in complex environments with strategic and

economic uncertainty?

A growing literature offers some insights. In pricing games, Q-learning algorithms

have been shown to sustain tacit collusion, even when standard theory predicts com-

petitive outcomes (e.g., Calvano et al., 2020; Colliard et al., 2025; Dou et al., 2025).

This shows that AI can learn sophisticated, nontrivial strategies without explicit

communication or intent. Yet, most of these studies focus on settings with a unique

equilibrium, where learning places limited demands on strategic reasoning. Events

such as bank runs and financial market freezes are, in contrast, shaped by multiple

equilibria driven by strategic complementarities: investors’ actions depend on their

beliefs about others’ behavior (Diamond and Dybvig, 1983). In such environments,

panic-driven crises can emerge with large economic costs (Reinhart and Rogoff, 2009).

Furthermore, because beliefs respond to fundamentals, equilibrium selection varies

with economic conditions (Goldstein and Pauzner, 2005).

This paper studies how different types of AI agents behave in such environments
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and the implications for financial stability. To this end, we consider a stylized model

of mutual fund redemptions based on Chen et al. (2010), in which AI agents de-

cide whether or not to redeem their shares. Using a simulation-based experimental

setup, we show that reinforcement learning agents tend to converge on coordinated

strategies, but their learning dynamics bias them toward redeeming their shares, so

they often coordinate on inefficient outcomes characterized by excessively high asset

liquidations. By contrast, reasoning-oriented LLM agents use context: rather than

relying solely on trial-and-error, they interpret the game structure and adapt ac-

cordingly. This keeps them close to theoretical benchmarks and prevents systematic

over-redemption, but heterogeneity in their beliefs hinders their ability to coordinate

on equilibrium outcomes. Our result thus highlights that the design of AI systems

matters for financial stability: reinforcement learning promotes coordination but at

the expense of financial stability, whereas LLM reasoning improves stability, but het-

erogeneity in beliefs makes the outcomes more difficult to predict.

Framework We build on a canonical mutual fund run model (Chen et al., 2010),

a parsimonious variant of the models in Diamond and Dybvig (1983) and Goldstein

and Pauzner (2005), that delivers multiple redemption equilibria.1 The model yields

theoretical predictions about equilibrium behavior, which we use as a benchmark for

evaluating AI agents’ decisions and their effects on financial stability.

In the model, investors choose whether to redeem their shares before the fund’s

investment project matures. Their payoffs depend on both economic fundamentals

and the actions of other investors. Strategic complementarities imply that the incen-

tive to redeem rises when more investors do so, while stronger fundamentals reduce

the appeal to redeem. We examine equilibria under two dimensions of uncertainty:

(i) payoff uncertainty, contrasting whether the fund’s returns are risky or risk-free,

and (ii) fundamental uncertainty, where investors may or may not observe the true

underlying fundamentals.

With these results in hand, we design an experiment that replaces investors with

AI agents to test whether they replicate the model’s equilibrium predictions. We use

two types of agents: Q-learning algorithms that learn through trial and error, and

large language model (LLM) that make decisions using contextual understanding and

1While our focus is on mutual fund redemptions, the insights extend to other environments with
similar strategic complementarities and payoff structures, such as bank runs and currency crises.
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chain-of-thought reasoning. The experiment is built around four core predictions from

the theoretical model. When there is no uncertainty, investors should redeem when

fundamentals are weak, stay when fundamentals are strong, and exhibit multiple pos-

sible outcomes when fundamentals are in between, i.e., either everyone redeems or

everyone stays. Second, the share of redemptions should not be affected by the payoff

uncertainty since only expected returns matter. Third, with fundamental uncertainty,

equilibrium behavior should take the form of threshold strategies, with investors re-

deeming whenever their private signal falls below a critical cutoff. Finally, financial

fragility, defined as early inefficient redemptions in excess of the first-best level, should

increase as markets become more illiquid.

Results We find consistent differences between reinforcement-learning and reasoning-

based AI agents in environments with strategic complementarities.

First, in the absence of uncertainty, both types of investors reproduce the domi-

nance regions predicted by theory: all redeem when fundamentals are weak, all stay

when they are strong. However, in the intermediate range, behavior diverges. Q-

learning (QL)-investors converge to a sharp threshold rule, effectively collapsing mul-

tiplicity into the risk-dominant equilibrium. In contrast, LLM-investors, who have

heterogeneous beliefs about the actions of other investors, exhibit less coordination

on equilibrium outcomes, resulting in partial redemptions.

Second, on introducing payoff uncertainty, LLM-investors continue to align with

the theoretical benchmark: by reasoning in expected-value terms, they treat the en-

vironment as equivalent to one without payoff uncertainty. QL-investors, however,

display a systematic bias toward redemption. Their learning dynamics penalize stay-

ing whenever a zero return is realized, which drives Q-values below the true expected

payoff and pushes them toward inefficient redemptions.

Third, with fundamental uncertainty, LLM-investors recognize the problem as a

global game and coordinate around the theoretical panic threshold. QL-investors, by

contrast, exhibit a over-redemption when signals are noisy. Heterogeneity in private

signals generates disagreement that lowers the payoff from staying, thus reinforcing

the bias toward redemption. However, unlike the scenario with payoff uncertainty,

their behavior converges to persistent partial redemptions—an equilibrium outcome

consistent with theory, but inefficient relative to the first best.

Finally, for LLM-investors, fragility rises monotonically with illiquidity, thus closely
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tracking the theoretical benchmark. For QL-investors, the relationship is more com-

plex: with precise signals and no payoff uncertainty, outcomes align with theory; with

noisy signals or payoff uncertainty, fragility increases, and its sensitivity to illiquidity

depends on the interaction of these two sources of uncertainty.

Taken together, these results highlight a central tradeoff: reinforcement learn-

ing promotes coordination but at the expense of financial stability, whereas LLM

reasoning improves stability by anchoring to theoretical benchmarks, but reduces co-

ordination through heterogeneous beliefs. A key implication is that the design of AI

systems is not neutral – different approaches shape market dynamics in systematically

different ways, and therefore the stability of the financial system critically depends

on how AI agents are built.

Literature Our paper contributes to several strands of literature at the intersection

of AI and finance. First, it advances the emerging work on AI and financial stabil-

ity, a topic that has attracted growing attention from policymakers (Shabsigh and

Boukherouaa, 2023; Aldasoro et al., 2024; Financial Stability Board, 2024; Leitner

et al., 2024; Bank of England, 2025) but has only recently begun to receive system-

atic treatment in academia. Notable contributions include Danielsson et al. (2022)

and Danielsson and Uthemann (2025), who examine channels through which AI may

generate or amplify systemic risk and crises. We move this agenda forward by provid-

ing an experimental, model-grounded assessment of AI in a canonical coordination

game with multiple equilibria. In a multiagent mutual fund framework, we compare

distinct AI technologies across economic conditions that vary payoff risk and informa-

tion. This design allows us to isolate the key economic drivers that shape Q-learning

behavior and LLM reasoning, and to map how these drivers determine equilibrium

selection and the level of fragility. Our study is related to Yang (2024), who shows

that Q-learning can trigger currency attacks in a two-agent setting under alternative

information structures. Relative to that work, we focus on a mutual fund withdrawal

game with many interacting agents, and we conduct a head-to-head comparison of AI

architectures to identify how technology choice and environment interact to produce

fragility.

We also add to the growing literature that uses AI simulations in financial settings.

Several papers use reinforcement learning to study asset pricing and trading: portfolio

choice (Cong et al., 2023), liquidity provision (Colliard et al., 2025), and speculation
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(Dou et al., 2025). We shift the focus from performance to mechanism by examining

what drives AI agents’ choices and what that implies for financial stability.

More broadly, our paper contributes to the economics of AI. Beginning with Cal-

vano et al. (2020), much of this literature has examined pricing algorithms and doc-

umented emerging collusion in a variety of settings (Banchio and Mantegazza, 2022;

Banchio and Skrzypacz, 2022; Cont and Xiong, 2024). Collusive outcomes also appear

in many of the finance applications noted above, including our own. In our setting,

however, collusion has a more nuanced interpretation; it is a mechanism through

which AI agents resolve coordination failures. This interpretation links algorithmic

“collusion” to equilibrium selection rather than illicit intent, and it helps explain

why machine behavior can be predictable even in environments that admit multiple

equilibria.

Along similar lines, we add to the growing literature that examines LLM agents as

decision-makers in economic and strategic contexts. Recent work shows that LLMs

can participate in strategic experiments (Horton, 2023), sustain cooperation in re-

peated games (Akata et al., 2023), and serve as stand-ins for human subjects with

promising fidelity (Anthis et al., 2025). With appropriate prompts, LLMs can emu-

late investors (Fedyk et al., 2024), bank depositors (Kazinnik, 2023), and loan officers

(Cook and Kazinnik, 2025); they can also serve as proxies for survey respondents

(Hansen et al., 2024) and replicate human-like macroeconomic expectations (Bybee,

2023; Zarifhonarvar, 2024). Within finance, Lopez-Lira (2025) introduce an open-

source framework that pits LLM trading agents against value investors, momentum

traders, market makers, and contrarians, while Gao et al. (2024) show that heteroge-

neous LLM-investors produce price dynamics that mirror observed markets. Bhagwat

et al. (2025) elicit beliefs from LLM-investor personas and find that disagreement

about firm news both tracks abnormal trading volume and predicts a subsequent re-

turn premium. We build on these advances by placing LLMs in a classic withdrawal

game and comparing their behavior with that of reinforcement learners, thereby clar-

ifying how explicit reasoning, as opposed to implicit learning, affects equilibrium

selection and fragility.

Finally, we contribute to the literature on financial fragility. Following the seminal

work of Diamond and Dybvig (1983), this literature has extended to other financial

institutions subject to strategic uncertainty, such as mutual funds (Chen et al., 2010),

hedge funds (Liu and Mello, 2011), credit markets (Bebchuk and Goldstein, 2011),
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life insurers (Foley-Fisher et al., 2020) and stablecoin issuers (Gorton et al., 2025),

among others. Despite rich theory, credible empirical evidence remains scarce, with

Goldstein et al. (2017) and Chen et al. (2024) as notable exceptions. We open a

new research avenue by experimentally testing theories of financial fragility using AI

agents, allowing fine-grained control over information, payoffs, and strategic interac-

tion, and showing clear links among market fundamentals, algorithmic design, and

systemic risk.

The rest of the paper proceeds as follows. In Section II, we present a stylized

theoretical framework characterized by strategic complementarities and derive the

prediction that we test in the experiments with Q-learning algorithms and LLMs. In

Section III, we describe the experimental environment for both AI types. The results

of the simulations are reported in Section IV. Section V concludes.

II. Theoretical Framework

In this section, we characterize equilibria in a stylized coordination game building on

Chen et al. (2010), and derive testable predictions. Proofs appear in Appendix A.

The economy extends over two dates, t = 1 and t = 2, and consists of a mutual fund

and N > 2 risk-neutral investors. Before t = 1, each investor holds one share of unit

value, so the fund’s total size is N .

The book value of the fund’s investments at t = 1 is R1N , which is common

knowledge. At t = 2, the per-unit investment return is R2(θ) = Rθ. This spec-

ification captures an equity fund, in which investors hold a pro rata claim on the

portfolio’s period-2 payoff. The variable θ represents the fundamental of the econ-

omy and positively affects fund’s investment return at t = 2.2 It is uniform on [0, 1]

and drawn at the beginning of t = 1.3 In what follows, we distinguish between two

informational environments regarding the fundamental: (i) no fundamental uncer-

tainty, where θ is common knowledge; and (ii) fundamental uncertainty, where each

investor, i, receives a noisy private signal si = θ + ϵi, with ϵi i.i.d. across agents and

uniformly distributed over the interval [−η, η].

2In Chen et al. (2010) θ is a measure of the fund performance. The two definitions are clearly
linked, as better fundamentals can be associated with improved fund performance. For the purpose
of our exercise, the precise definition is immaterial.

3Assuming uniformity is without loss for our results: they hold for any strictly increasing mapping
R(θ).
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At the beginning of t = 1, a number A < N of investors are active, and choose

whether to redeem their shares or stay until t = 2. Investors who redeem their

shares receive the current value R1. However, in order to service redemptions, the

fund must liquidate assets, which is costly. Specifically, to raise R1, the fund must

liquidate (1+λ)R1 units of assets, where λ > 0 is a measure of illiquidity: the higher

λ, the greater the share of assets that must be liquidated to service redemptions.

Following Chen et al. (2010), we assume that A ≤ N
1+λ

, implying that the mutual

fund has enough resources to meet the redemptions of all the A active investors at

t = 1. Thus, all investors who redeem their shares receive R1 for sure.4

Denoting the number of investors who redeem by W , an investor who decided to

stay receives
N −W (1 + λ)

N −W
R1Rθ . (1)

The payoff from staying is increasing in θ, but is decreasing in both asset illiquidity

λ and the number of redemptions, W .

A. Characterizing the Equilibria

We focus on characterizing equilibria in pure strategies. As a benchmark, we first

consider the case without fundamental uncertainty when θ is common knowledge.

Following standard lines of reasoning (Morris and Shin, 1998), we can partition the

space of the fundamental into three intervals, which we report in Proposition 1 and

Figure 1.

Proposition 1: In the absence of fundamental uncertainty, equilibrium outcomes de-

pend θ. For sufficiently extreme values of θ, there exists a unique Nash equilibrium

in pure strategies, while for intermediate values multiple equilibria arise. Specifically,

• if θ < θ = 1
R
, the unique equilibrium is that all investors redeem at t = 1;

• if θ > θ = 1
R

N−(A−1)
N−(A−1)(1+λ)

, the unique equilibrium is that all investors stay until

t = 2;

• if θ ∈ [θ, θ], both “all redeem” and “all stay” are equilibria.

An important prerequisite for the emergence of multiple equilibria is illiquidity.

When the portfolio is perfectly liquid, i.e., λ = 0, asset liquidation does not impose

4The derivations for the case with illiquidity, i.e, when A > N
1+λ , are in Appendix C.
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θ
0 1θ θ

Dominant
strategy:
Redeem

Dominant
strategy: stay

Multiple
equilibria

Figure 1: Equilibria without Fundamental Uncertainty

additional costs on the fund and investors who stay. The expected return from staying

is independent of early redemptions. This implies that redeeming at t = 1 is the

strictly dominant action for θ < θ, while staying is strictly dominant for θ > θ. From

a welfare perspective, this is the efficient redemption strategy, since only negative

NPV investments are liquidated. Hence, the threshold θ also denotes the first-best

redemption strategy.

In contrast, when λ > 0, redemptions no longer reflect solely the liquidation of

unprofitable assets. In this case, the expected payoff difference between staying until

t = 2 and redeeming at t = 1 decreases monotonically with the number of investors

who redeem. As a result, even when fundamentals are sound (i.e., above θ), investors

have an incentive to redeem if they expect others to do so. Put differently, redemption

decisions are strategic complements: the incentive to redeem strengthens when others

are expected to redeem. This strategic complementarity generates multiple equilibria

in the intermediate region [θ, θ].

Next, we consider the case with fundamental uncertainty, i.e., investors do not

observe the realized θ but instead receive noisy signals. We follow the global game

literature (Carlsson and Van Damme, 1993; Goldstein and Pauzner, 2005) and study

how investors make their redemption decisions based on the signals. Proposition 2

characterizes the equilibrium, which is also illustrated in Figure 2.

Proposition 2: With fundamental uncertainty, there exists a unique symmetric Bayes-

Nash equilibrium in threshold strategies that is characterized by the threshold signal

θ∗ ≡ A∑A−1
W=0

N−W (1+λ)
N−W

R
, (2)

such that an investor redeems if and only if his signal is below θ∗ ∈ (θ, θ̄). For a given

realization of the fundamental θ, the share of investors who redeem their shares at
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t = 1 is

w∗(θ, θ∗) =


0 if θ > θ∗ + η

θ∗−θ+η
2η

if θ ∈ [θ∗ − η, θ∗ + η]

1 if θ < θ∗ − η

. (3)

The introduction of private information yields a unique equilibrium characterized

by a threshold signal θ∗. This threshold determines the probability of redemption

across investors. For fundamentals in the range θ < θ < θ∗, redemptions are driven

by panic rather than weak fundamentals and are therefore inefficient. In this region,

investors redeem not because redemption is a dominant strategy, but because the

fundamental is weak enough to make each investor fear that others will redeem as

well.

The threshold signal θ∗, and in turn the average number of investors redeeming

their share, depends on the underlying economic parameters. In particular, θ∗ in-

creases with the illiquidity parameter λ. When λ is large, the fund must liquidate

more assets to meet redemptions at t = 1, which reduces the payoff from staying.

This strengthens investors’ incentive to redeem early, thereby raising θ∗.

The results in Propositions 1 and 2 are derived under a specific assumption about

the investment return at t = 2. As discussed above, the specification R2(θ) = Rθ

corresponds to the case of an equity fund. An alternative is a fund investing primarily

in debt securities, i.e., a bond fund. In that case, the return at t = 2 takes the form

R2(θ) =

R with prob θ

0 with prob 1− θ
(4)

Relative to the equity-fund specification, this introduces payoff uncertainty: investors

may receive zero even when fundamentals are favorable. By contrast, under the

equity-fund specification there is no payoff uncertainty, since the payoff is determin-

istic given θ and is strictly positive whenever θ > 0. Proposition 3 establishes that

this distinction does not affect the theoretical results.

Proposition 3: The results in Propositions 1 and 2 remain unchanged when the fund’s

return at t = 2 is given by Equation (4).

This irrelevance follows from investors’ risk neutrality: only the expected payoff

matters for redemption decisions, and this expectation is identical across the two
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Figure 2: Equilibria with Fundamental Uncertainty

specifications and equal to R/2. What differs is the presence or absence of payoff

uncertainty. In the equity-fund case (without payoff uncertainty), investors receive

zero only when θ = 0. In the bond-fund case (with payoff uncertainty), investors may

receive zero even when fundamentals are strong.

B. Testable Predictions

Based on the characterization of the equilibria, we draw the following predictions.

With common knowledge about θ, Proposition 1 highlights the tri-partite classifica-

tion of the fundamental, with multiple equilibria emerging for intermediate values of

θ. Multiple equilibria emerge because investors’ beliefs over others are indeterminate.

Prediction 1: Without fundamental uncertainty, all investors: (i) redeem their shares

when θ < θ and (ii) stay when θ > θ. In the intermediate range, both “all redeem”

and “all stay” are equilibria.

Since the characterization of the equilibria only depends on the expected return

at t = 2, payoff uncertainty is irrelevant, as highlighted in Proposition 3. This result

is the basis for our next prediction.

Prediction 2: Investors’ redemption flows are not impacted by the introduction of

payoff uncertainty.

With fundamental uncertainty, Proposition 2 shows that there is a unique signal

threshold equilibrium characterized by θ∗ and, for any given θ, the share of investors

who redeem is given by w∗(θ, θ∗). Our next prediction concerns the signal threshold

and how signal precision impacts investors’ redemptions.

Prediction 3: With fundamental uncertainty, investors use threshold strategies, i.e.,

redeem whenever their private signal is below the critical threshold θ∗. The share of

investors who redeem is given by w∗(θ, θ∗), which is decreasing in signal precision.

11



Redemptions are inefficient unless fundamentals θ are so low that redeeming is a

strictly dominant action. This motivates our definition of fragility as the extent of

inefficient, panic-driven redemptions. With fundamental uncertainty, fragility is mea-

sured by the expected number of redemptions that occur when θ > θ. Formally, this

corresponds to the share of early redemptions w∗(θ, θ∗) defined in Equation (3). The

cutoff θ serves as the first-best benchmark: above θ, efficient behavior would entail

no redemptions, so any observed redemptions reflect fragility. Since θ is independent

of λ, while θ∗ (and thus w∗(θ, θ∗)) increases with the liquidation cost λ, we obtain

the following prediction.

Prediction 4: Fragility increases monotonically with fund illiquidity.

III. Experimental Design

Our primary goal is to explore the impact of AI-based investors on financial stability.

To this end, we construct a simulation-based experimental setup where we replace

the investors from the theoretical model with algorithmic counterparts. We consider

two distinct types of AI-based investors: Q-learning (QL) investors, who optimize be-

havior through trial-and-error and reward updating; and LLM-investors, who reason

contextually using chain-of-thought inference.

To ensure comparability, both types of investors are evaluated under the same

economic environment. There are A = 30 active investors out of a total of N = 50.

The investment returns are R1 = 1 and R = 2. The illiquidity parameter λ is drawn

from an equally spaced seven-point grid spanning [0.05, 0.35]. The fundamental θ is

drawn from an equally spaced twenty-five-point grid spanning [0.4, 1], a range that

includes both dominance bounds θ and θ.

A. Q-learning Algorithm

We first consider QL-investors, implemented via the Q-learning algorithm. Q-learning

is a standard reinforcement-learning method in which agents, without prior knowledge

of the payoff structure, learn action values through trial-and-error interaction with the

environment. By repeatedly updating these values across episodes, agents eventually

converge toward a stable policy that approximates optimal behavior.

The algorithm has four components:
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1. States: The state θi for each QL-investor i is derived from the information

that they receive, i.e., either the true fundamental θ or the noisy signal si. As

Q-learning requires a finite state space, this continuous information is mapped

to a discrete classification, which constitutes the effective state of the algorithm.

The set of all states is denoted Θ ⊂ N.

2. Actions: The action set is binary, A = {aR, aS}, where aR denotes “redeem”

and aS denotes “stay.”

3. Rewards: The reward function π(θ, a) assigns a payoff based on the realization

of the fundamental θ and the chosen action a. Crucially, QL-investors do not

observe the underlying mapping (θ, a) 7→ π but only the realized rewards.

4. Episodes: Learning unfolds over T episodes. In each episode, QL-investors

observe their state, choose an action, and update their Q-values based on the

realized payoff.

Each QL-investor i = 1, . . . , A starts episode t = 1, . . . , T with a Q-matrix Qi,t ∈
R|Θ|×2, with rows for states and columns for actions. Following the realization of the

state θi,t, the action is determined according to an ε-greedy policy: with probability

εt = βt, the QL-investor explores by randomizing between aR and aS, while with the

complementary probability 1 − εt, the QL-investor exploits by choosing the action

that maximizes Qi,t(θi,t, a).

If the chosen action is a∗i,t = aR, the reward is π(θ, aR) = R1. If instead a∗i,t = aS,

the reward depends on θ (the true fundamental) and the other QL-investors’ actions

and is given by Equation (1). The Q-matrix is then updated as

Qi,t+1(θi,t, a
∗
i,t) = (1− α)Qi,t(θi,t, a

∗
i,t) + απ(θ, a∗i,t), (5)

where α ∈ [0, 1] is the learning rate: higher α places more weight on new rewards,

while lower α smooths learning over past experience. Figure 3 summarizes the itera-

tive process.

In our simulations, we set β = 0.99999, α = 0.1 and |Θ| = 75. We run 25

independent rounds of training, each with T = 500, 000 episodes. For these hyperpa-

rameters, each QL-investor experiments approximately 100,000 times in expectation,

which corresponds roughly to 1/5 of total episodes.5

5Consistently with Colliard et al. (2025), we fix the hyperparameters and only perform compar-
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QL-investor i

QL-investor j

Exploitation
a∗i,t = argmax

a∈{aR,aS}
Qi,t(θi,t, a)

Exploration
Randomize a∗i,t ∈ {aR, aS}

1− ϵt

ϵt

Exploit

Explore

Reward
π(θ, a∗i,t)

Updating Q-matrix
Qi,t+1(θi,t, a

∗
i,t) = (1− α)Qt(θi,t, a

∗
i,t)

+απ(θ, a∗i,t)

Start episode t

θ and θi,t realized

Iterate to episode t+ 1

Figure 3: Iterative Process of Q-learning

B. Reasoning LLMs

Large language models (LLMs) are designed to predict the next word (or “token”) in

a sequence of text. Unlike the Q-learning algorithm, where parameters are updated

through repeated trial-and-error, LLMs do not change their parameters when generat-

ing outputs. Instead, they rely on context-based inference: they read the information

given in a prompt, identify relevant patterns, and use this to produce their response.

Thus, rather than learning gradually through experience, LLMs adapt their behavior

directly from the environment they are presented with.

Here, we consider LLM-investors, whose decision process differs fundamentally

from QL-investors. Instead of learning through numerical rewards, LLM-investors

rely on context-based inference to decide whether to redeem or stay.

We use DeepSeek’s state-of-the-art reasoning model, R1. A recent class of large

ative statics exercises with respect to economic variables (e.g., λ). Modifying the hyperparameters
in a way that is meaningful from an economic perspective would involve not only taking a stance
on what their optimal value is, but also making assumptions about the preferences and objective
functions of the agents coding the algorithms.
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language models has been designed to deliberate, breaking down problems into in-

termediate steps and evaluating their reasoning before producing an answer. This is

typically implemented through chain-of-thought style traces, verifier loops, and reflec-

tion. Like other large language models, R1 is based on the transformer architecture

and generates text by predicting the next token. Reasoning models build on this foun-

dation by explicitly optimizing for step-by-step decomposition and self-verification

using the chain of thought approach. Several such models are now available, includ-

ing OpenAI’s o3 and Google’s Gemini 2.5 Pro. A key advantage of DeepSeek’s R1 is

that it provides direct access to the full chain-of-thought, enabling us to reconstruct

the “mental model” behind each investor’s decision. It is also an open-source model,

supporting transparency and replicability.6

The experiment unfolds in two stages. First, we design the prompts. Each prompt

distills the economic environment into a concise, textual description that specifies the

investor’s objective, the structure of payoffs, and the information available. The base-

line version (Prompt 1) presents a world without uncertainty, neither in fundamentals

nor in payoffs. To introduce payoff uncertainty, we modify line 3, as shown in Prompt

2. To introduce fundamental uncertainty and private signals, we append additional

information after line 9, as detailed in Prompt 3.

Next, we run the model. Each prompt is instantiated with the relevant param-

eters and submitted to the DeepSeek R1 model via an API call. Every investor is

represented by a separate, independent call to the model. To encourage consistent

behavior, we set the temperature hyperparameter to zero, reducing randomness in

the outputs.7 For each AI investor, we collect both the generated explanation and

the final decision, which together determine the payoff.

6For a broader discussion on the use and evaluation of open-source LLMs, see Cook et al. (2023).
7The temperature setting controls the degree of randomness in the model’s responses: a value

near zero yields deterministic and focused outputs, while higher values introduce more variation.
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1 You are one of A=\%d active investors in a mutual fund out

of a total of N=\%d investors. Each investor holds one

share. Your goal is to maximize your return.

2 If you redeem your share , then you earn R1.

3 If you do not redeem your share , i.e., you stay , then you

earn fraction * R1 * R * \theta , where:

4 - fraction = (N - W * (1 + λ)) / (N - W) is the fraction

of assets remaining in the fund after serving

redemptions;

5 - W ≤ A-1 is the number of other active investors who

redeem (the remaining N - A investors are passive and

never redeem);

6 - λ (lambda) = \%f is the illiquidity parameter;

7 - R1 = \%f is the value of the share if you redeem;

8 - R = \%f is the return earned by the fund from managing

its portfolio;

9 - θ (theta) = \%f is the fundamental , which measures the

fund ’s performance.

10 Do you choose to redeem your share or stay? State your

decision with exactly one word: ‘‘redeem ’’ or ‘‘stay ’’

using the XML tag <decision >...</ decision >.

Prompt 1: No Fundamental Uncertainty or Payoff Uncertainty

3 If you do not redeem your share (i.e., you stay), then

with probability θ you earn fraction * R1 * R, and

otherwise you get 0, where:

Prompt 2: Payoff Uncertainty Add-on
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10 The fundamental value θ (theta) of the fund is randomly

drawn from the interval [0,1] but you do not directly

observe it. All values of θ are equally likely.

11 Instead you receive a private signal x_i defined as x_i =

θ + ϵ_i , where ϵ_i is drawn uniformly from [−η, η] with η

= \%f. Signals of different investors are drawn

independently. Your private signal is x_i = \%f.

12 Do you choose to redeem your share or stay? State your

decision with exactly one word: ‘‘redeem ’’ or ‘‘stay ’’

using the XML tag <decision >...</ decision >.

Prompt 3: Fundamental Uncertainty Add-on

We subsequently iterate for the values of the illiquidity parameter and fundamental

from the prespecified grid. We repeat this process for three independent rounds to

generate statistical properties and construct confidence intervals around the outcomes.

To analyze the decision-making of LLM-investors, we use a second LLM as an

analyst that converts the investors’ explanation into directed acyclic graphs (DAGs).8

The analyst LLM decomposes the explanations into three sub-graphs: context (inputs

such as the economic environment, number of players, and payoff rules), reasoning

(the intermediate logical or computational steps), and decision (the final action). We

then compile the extracted variables, assumptions, and equations into a DAG that

encodes functional dependence (nodes) and information flow (directed edges).

IV. Experimental Results

In this section, we report the results of our experiments with QL and LLM-investors

to test our theoretical predictions. Before exploring the experiments in detail, it is

instructive to consider the behavior of a single investor without fundamental or payoff

uncertainty in order to isolate and highlight the role of strategic uncertainty. Figure 4

plots the withdrawal decision of a QL-investor and a LLM-investor as a function of the

8A DAG consists of nodes (variables, computed quantities, or decisions) and directed edges
indicating the direction of influence or information flow. For a recent example of using DAGs to
analyze LLM reasoning, see Bybee (2023).
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Figure 4: Decision of a single investor as a function of the fundamental, without
fundamental or payoff uncertainty.

fundamental θ for λ = 0.25.9 Both types of investors behave largely in accordance

with theory: in the absence of strategic uncertainty, the first-best equilibrium is

obtained, with the decision to switch from redeem to stay occurring around the first-

best threshold, θ = 1
R
= 0.5. Changes in the illiquidity parameter play no role, since

θ = 1
R
is independent of λ.

Figure 5 shows the reasoning structure inferred from one LLM-investor’s explana-

tion for θ = 0.55. The DAG begins with contextual inputs: the payoff from redeeming

is fixed at 1, and the investor recognizes that it is the sole active participant, so no

other investors redeem. From this, the reasoning proceeds to compute the payoff

from staying, which equals 1.1. The model then compares the two options, noting

that 1.1 > 1.0, and concludes that staying yields the higher return. This inference

flows into the decision sub-graph, where the investor chooses to stay.

9In all subsequent figures we set λ = 0.25 unless otherwise specified.
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Figure 5: Reasoning structure for the LLM-investor. The DAG was constructed based
on the explanation in the experiment with θ = 0.55.
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A. Coordination and Multiple Equilibria

Next, we turn to our analysis of experiments with multiple investors (A = 30) si-

multaneously choosing to redeem or stay in the absence of fundamental uncertainty.

Figure 6 plots the share of investors who redeem as a function of the fundamental in

the absence of payoff-uncertainty and for λ = 0.25. Within the dominance regions,

investors perfectly coordinate on the Nash equilibria predicted by the theory. So,

when the fundamental is weak, i.e., θ < θ, they all redeem, while when fundamentals

are strong, i.e., θ > θ, they all stay. In the intermediate region, however, differ-

ences emerge. While QL-investors continue to coordinate on equilibrium outcomes,

LLM-investors find it more difficult to coordinate leading to intermediate levels for

redemptions.

The aggregate outcome obtained with QL-investors switches at some critical value

of the fundamental, which we denote by θ̃. So, for θ < θ̃, all agents redeem, while for

θ ≥ θ̃, they all stay. Across multiple runs of the QL algorithms, we obtain the same

outcome. The implications of this are two-fold. First, QL-investors converge to equi-

librium outcomes. And second, they consistently converge to the same equilibrium

outcomes, implying that multiple equilibrium outcomes, for the same value of θ, do

not materialize.

Rationalizing the behavior of QL-investors. The behavior of QL-investors and

the cut-off, θ̃ can be rationalized using K-level reasoning, which is a model of bounded

rationality. In this framework, agents reason in layers: a level-0 agent chooses ran-

domly between redeeming and staying. A level-1 agent assumes others are level-0 and

best-responds to that assumption. A level-2 agent assumes others are level-1, and so

on.

The aggregate behavior observed among QL investors aligns with that of level-1

reasoners. That is, they behave as if they expect others to act randomly and adjust

their strategy accordingly. As a result, the critical threshold θ̃ corresponds to the

fundamental value at which an agent is indifferent between redeeming and staying,

given the belief that others are equally likely to choose either action, i.e.,

θ̃ =
R1(

1
2

)A−1∑A−1
W=0

(
A−1
W

) (N−W (1+λ)
N−W

)
R1R

. (6)
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Figure 6: Share of redemptions as a function of the fundamental θ under full infor-
mation (no fundamental or payoff uncertainty).

The threshold strategy, redeem whenever θ < θ̃, delivers the risk-dominant equilib-

rium. Christianos et al. (2023) and Albrecht et al. (2024) highlight that independent

Q-learning algorithms converge to the risk-dominant equilibrium when they are un-

certain about the actions of others.10 Thus, QL-investors operate as if they all use

the same threshold strategy that delivers the unique risk-dominant equilibrium.

Rationalizing the behavior of LLM-investors. In contrast, LLM-investors strug-

gle to coordinate on equilibrium outcomes in the intermediate region. There are two

key steps. First, investors recognize that the return from staying depends on the

number of other investors who also stay. And for staying to be optimal, sufficiently

many other investors must also stay. Having determined this critical number of other

investors who must choose not to redeem for staying to be optimal, the next step

involves reasoning over the actions of the other investors.

To understand the reason behind this finding, Figure 7 plots the DAG for the

representative LLM-investor with θ = 0.55 and λ = 0.25. Since the prompts to LLM-

10This result had also previously been established in the context of a two-player stag-hunt game
(Bearden, 2001).
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investors do not specify how they should form beliefs over the behavior of others, we

find that different investors use different models to form their beliefs. In one model,

the investor has an optimistic belief that all investors will coordinate on the Pareto-

optimal action, which is to stay. However, in the second model, the investor holds

a pessimistic belief that all others will choose to redeem. The other belief model

identified in the reasoning also leads to the conclusion that redeeming is optimal.

Our analysis thus implies that the failure to coordinate actions stems from LLM-

investors using different approaches to form their beliefs over the behavior of others.

We summarize our findings below.

Findings 1: In the absence of both fundamental uncertainty and payoff uncertainty,

both QL and LLM-investors coordinate on the theoretically predicted equilibria in the

dominance regions: all investors redeem for θ < θ and all agents stay for θ > θ.

In the intermediate region, QL-investors behave as if they are level-1 reasoners, and

so they all redeem whenever θ < θ̃. Consequently, there are no multiple equilibria.

The LLM-investors fail to coordinate their actions in the intermediate region since

different investors use different models to form beliefs about the behavior of others.

B. Irrelevance of Payoff Uncertainty

We test Prediction 2 that payoff uncertainty is irrelevant for the aggregate outcome.

Figure 8 plots the results for the share of redemptions as a function of the fundamental

for both specifications of R2(θ) and for both QL and LLM-investors. We note two

key results. First, the outcome with LLM-investors is only slightly influenced by

the payoff uncertainty. In fact, the results with and without payoff uncertainty are,

for the most part, statistically indistinguishable. Second, QL-investors experience a

much stronger bias towards redeeming, even for values of θ where staying is predicted

to be the strictly dominant action.

Rationalizing the behavior of LLM-investors. An explanation for this result

can be found by looking at the mental model that LLM-investors use to handle payoff

uncertainty. As Figure 9 illustrates, the investors use the concept of expected value

to treat the uncertainty, which renders the problem identical to that without payoff

uncertainty. Thus, LLM-investors’ ability to reason and contextualize delivers an

aggregate outcome in line with our prediction.
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Figure 7: Reasoning structure for a representative LLM-investor. The DAG was
derived from the explanations provided in the experiment with θ = 0.55.
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Figure 8: Payoff uncertainty and redemptions vs. θ (fundamentals known).

Rationalizing the behavior of QL-investors. An explanation for QL-investors’

bias towards redeeming can be found by exploring the properties of reinforcement

learning. Consider investor i in episode t, currently in state θi,t, that chooses to

stay (action AS). With probability 1 − θ, the fund’s return is zero and the investor

receives no reward, π(θ, aS) = 0. Since the Q-learning update rule is Qi,t+1(θi,t, a) =

(1− α)Qi,t(θi,t, a) + α · π(θ, a), a zero reward implies that

Qi,t+1(θi,t, AS) = (1− α)Qi,t(θi,t, aS). (7)

Thus, each zero-return episode revises the Q-value downward. An accumulation of

such realizations, particularly during the exploration phase, causes the Q-values of

staying to remain systematically below the true expected value Rθ, making QL-

investors pessimistic about the benefits of staying.

In contrast, the payoff for redeeming is fixed at R1 and not subject to uncer-

tainty. Consequently, as the Q-values for redeeming rapidly converge to R1. Once

Qi,t(s, aR) > Qi,t(s, aS), the investor increasingly chooses to redeem. This reduces op-

portunities to learn the true value of staying and further entrenches the bias towards

redeeming.
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Figure 9: Inferred Mental model for how a representative LLM-investor handles payoff
Uncertainty. The DAG was derived from the explanations provided in the experiment
with θ = 0.55.
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Figure 10: Frequency of coordination failures (neither “all redeem” nor “all stay”)
across fundamentals θ, with payoff but no fundamental uncertainty.

Payoff uncertainty can also hinder coordination among QL-investors. Figure 10

illustrates this by plotting the share of the last ten percent of episodes in which

investors fail to coordinate on either “all redeem” or “all stay”. For most values of θ,

investors achieve nearly perfect coordination. However, for a range of high θ values,

which correspond to the intermediate redemption shares in Figure 8, the degree of

coordination falls sharply. This suggests that the intermediate levels of redemptions

stem from coordination failure rather than equilibrium multiplicity. Coordination

failure, in turn, arises because QL-investors fail to converge on a stable strategy

profile.

Figure 11 examines this convergence failure more closely by plotting the rolling

average of redemptions across episodes for several values of θ. The shaded regions

indicate the standard deviation across independent training runs. For most θ, the

share of redemptions converges to one and the variation between runs decreases,

consistent with successful coordination on the “all redeem” equilibrium. But, for some

intermediate θ values, the redemption shares exhibit a persistent upward drift and

substantial cross-run volatility. These patterns suggest that the “all stay” outcome

is unstable: repeated episodes in which agents receive zero payoff eventually push
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Figure 11: Evolution of redemptions across episodes with payoff uncertainty. The
figure shows the rolling average share of redemptions over twenty-five training rounds,
together with the associated standard deviations, for different values of θ.

them toward redeeming. In the limit, this dynamic implies that redemption becomes

dominant even when fundamentals are strong. Only at the extreme case of θ = 1,

where staying yields a strictly positive payoff with certainty, does “all stay” emerge

as a stable outcome.

Findings 2: Introducing payoff uncertainty, while maintaining that there is no fun-

damental uncertainty, has no material impact on the aggregate behavior of LLM-

investors. They use expected value as a solution concept to handle payoff uncertainty,

thus rendering the results indistinguishable from those without payoff uncertainty.

In contrast, payoff uncertainty introduces a strong bias towards redeeming for QL-

investors. This bias persists well beyond the upper dominance bound, θ̄. Moreover,

for very high values of θ, we find intermediate values for the share of redemptions,

mainly driven by a very slow convergence to the “all redeem” outcome.

C. Global Games Equilibrium with Fundamental Uncertainty

With fundamental uncertainty, equilibrium behavior is characterized by the panic

threshold θ∗ and the average redemption rate w∗(θ∗, θ). Figure 12 compares the

simulated outcomes of QL and LLM-investors to the theoretical benchmark across

different levels of signal precision.
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Panel (a) shows the case of highly precise signals (η = 0.01). Here, both QL-

investors and LLM-investors closely track the theoretical prediction: redemption be-

havior switches sharply around the threshold θ∗, consistent with the global games

equilibrium.

Panel (b) considers noisier signals (η = 0.05). In this case, a divergence emerges.

LLM-investors continue to align with the theoretical prediction, coordinating their

redemption decisions around θ∗. By contrast, QL-investors display a systematic bias

toward redeeming, leading to higher average redemption rates than theory would

predict.

Rationalizing the behavior of LLM-investors. Figure 13 illustrates the mental

model employed by LLM-investors under fundamental uncertainty. These investors

recognize that the environment is structurally equivalent to a canonical global games

setup and proceed to solve it accordingly. By reframing the problem in this way, and

(correctly) assuming that all other investors adopt the same signal threshold, they

eliminate the ambiguity of belief selection. The decision problem then reduces to

computing the threshold signal that makes the marginal investor indifferent between

redeeming and staying.

Rationalizing the behavior of QL-investors. Fundamental uncertainty induces

a bias toward redeeming among QL-investors, though less pronounced than under

payoff uncertainty. The mechanism is as follows. Because signals differ across in-

vestors, they may hold conflicting beliefs about the state of the world. This dis-

agreement—especially when signals are imprecise—translates into heterogeneous re-

demption decisions. Relative to the case without fundamental uncertainty, for any

realization of θ, the share of investors redeeming is higher, thereby reducing the payoff

from staying.

This dynamic is particularly evident when θ ≃ θ∗ and signal precision is low. Some

investors receive favorable signals suggesting that the fundamental is strong, while

others observe weaker signals pointing below the threshold. Those who redeem early

directly reduce the payoff to those who stay, which in turn depresses the Q-values

associated with staying. In this sense, fundamental uncertainty operates much like

payoff uncertainty in increasing the incentive to redeem early.

There is, however, a key distinction. Unlike under payoff uncertainty, learning in
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(a) High precision signals η = 0.01

(b) Low precision signals, η = 0.05

Figure 12: Share of redemptions as a function of the fundamental, with fundamental
uncertainty and no payoff uncertainty.

the presence of fundamental uncertainty does not converge to universal redemption.

Instead, consistent with the theoretical prediction w∗(θ, θ∗) ∈ (0, 1), the outcome

involves persistent partial redemptions: some investors redeem while others stay. As

shown in Figure 14, the rolling average of redemptions stabilizes at intermediate

levels, with the shaded confidence bands flattening over time. This suggests that, in

contrast to payoff uncertainty, the failure of QL-investors to coordinate fully is itself

a stable equilibrium outcome under fundamental uncertainty.

Findings 3: With fundamental uncertainty, LLM-investors use the global games so-
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Figure 13: Inferred mental model for a representative LLM-investor with fundamental
uncertainty. This DAG was derived from the explanations provided in the experiment
with A = 30, θ = 0.55 and η = 0.05.
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Figure 14: Evolution of redemptions across episodes with fundamental uncertainty
(η = 0.05). The figure shows the rolling average share of redemptions over twenty-five
training rounds, together with the associated standard deviations, for different values
of θ.

lution concept and switch around the critical threshold, θ∗, irrespective of the level of

signal precision. QL-investors, in contrast, are more sensitive to the level of signal

precision, which induces a bias towards redeeming. Moreover, instances of partial re-

demptions for intermediate values of the fundamental are not driven by slow learning

dynamics and emerge as an equilibrium outcome.

D. Relationship between Fragility and Illiquidity

We conclude by examining how fragility depends on asset illiquidity, captured by the

parameter λ. Focusing on the case with fundamental uncertainty, our theoretical

benchmark defines fragility as the difference between the redemption share w∗(θ∗, θ)

and the first-best allocation, where all investors redeem if and only if θ < θ. Intu-

itively, this gap measures the excess redemptions arising from coordination failures.

In our simulations with QL and LLM-investors, we define fragility analogously: as

the deviation of the simulated redemption profile from the first-best allocation.

Figure 15 plots the simulation results for fragility as a function of λ. The two

panels consider high-precision signals (η = 0.01) and low-precision signals (η = 0.05).

Since payoff uncertainty has been shown to be irrelevant for LLM-investors, we restrict
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(a) High precision signals η = 0.01

(b) Low precision signals, η = 0.05

Figure 15: Relationship between fragility and asset illiquidity.

attention to the case without payoff uncertainty. For QL-investors, by contrast, we

report results both with and without payoff uncertainty.

The results reveal a clear difference in behavior across the two types of investors.

The behavior of LLM-investors closely tracks the theoretical benchmark across both

levels of signal precision, both in the overall level of fragility and in the upward-sloping

relationship between fragility and illiquidity. This confirms the theoretical prediction

that greater illiquidity systematically increases fragility.

For QL-investors, the outcomes are more nuanced. In the absence of payoff un-

certainty, when signals are highly precise, the results are largely consistent with the
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theoretical benchmark, in line with the evidence reported in Figure 12a. With nois-

ier signals, however, QL-investors exhibit a stronger bias toward redemption, which

raises the level of fragility relative to the benchmark.

The introduction of payoff uncertainty amplifies this bias further, but the rela-

tionship between fragility and illiquidity now depends on signal precision. With high

precision, disagreement across investors is limited, and QL-investors tend to coordi-

nate on redeeming for almost all values of θ, leaving fragility largely insensitive to

λ apart from the narrow range of fundamentals where convergence problems arise

(Figure 10). When signals are less precise, by contrast, partial redemptions persist

as a stable feature of the learning dynamics (Figure 14), which in turn produces a

stronger positive relationship between fragility and illiquidity.

Findings 4: The relationship between fragility and illiquidity for LLM-investors is

well approximated by the theoretical benchmark, irrespective of signal precision. In

contrast, for QL-investors the relationship depends on both payoff uncertainty and

signal precision: payoff uncertainty amplifies their bias toward redemption, while low

signal precision strengthens the positive slope of fragility with respect to illiquidity.

V. Conclusion

We study how AI agents behave in canonical coordination problems (e.g., bank runs)

and, thus, their implications for financial stability. We find that equilibrium outcomes

are highly sensitive to the design of agents’ architectures. We show that Q-learning

investors systematically over-redeem relative to the theoretical cutoff, whereas LLM-

investors adhere more closely to the benchmark but coordinate less. Even when

individual agents pursue their objectives effectively, collective dynamics can still pro-

duce uniform and inefficient behavior, transforming small shocks into system-wide

runs and cascades.

Our contribution to the emerging literature on AI in finance is to show that

the design of AI systems matters. It is not merely the presence of AI in financial

decision-making, but how these agents are architected and how they interact with one

another that shapes outcomes. As AI use becomes increasingly prevalent in financial

domains, from trading algorithms to robo-advisors, it is essential to understand how

these agents behave both individually and in aggregate. The risks of AI-induced

coordination failures, such as bank runs and systemic crashes, are real, and may
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surpass human-driven risks because of AI’s speed, scale, and synchrony.

Our findings also raise broader questions about AI alignment in multi-agent con-

text. While much of the AI alignment literature focuses on aligning a single system

with human values, our results suggest that multi-agent alignment, or ensuring that

interactions among many AI agent cohorts lead to socially beneficial outcomes, is

equally important. In our model, each agent is individually aligned with its objective

(e.g., maximizing rewards), yet the group sometimes converges on globally inefficient

outcomes, much as humans do (Lorè and Heydari, 2024). With AI, however, such

dynamics may emerge faster and more uniformly.
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Appendices

Appendix A. Proofs

Proof of Proposition 1. For extreme values of the fundamental θ, investors have
a dominant action. We start with the low values of θ. Irrespective of what other
investors choose, redeeming at t = 1 is optimal for an investor when even the highest
payoff they can accrue at t = 2, which corresponds to the payoff accrued if no other
investors redeem, is smaller than R1. Formally, this is the case when R1Rθ < R1,
that is, when θ < θ ≡ 1

R
.

Symmetrically, staying until t = 2 is a dominant action when even the worst payoff
that an investor expects to receive at the final date, which corresponds to the payoff
accrued if all A − 1 investors redeem, is larger than R1. Formally, this is the case
when R1Rθ N−(A−1)

N−(A−1)(1+λ)
> R1 that is when θ > θ = 1

R
N−(A−1)

N−(A−1)(1+λ
.

When θ ∈ [θ, θ], both redeeming at t = 1 and not redeeming are equilibria. If
an investor expects others to redeem, it is optimal for them to redeem as well, since
staying until t = 2 would yield a lower payoff than R1. Conversely, if no one else
redeems at t = 1, it is optimal not to redeem either, as the payoff from staying,
R1Rθ, exceeds R1 for all θ > θ. This completes the proof.

Proof of Proposition 2. The proof adapts the standard approach in the global
game literature (Goldstein and Pauzner, 2005; Chen et al., 2010) to the case with a
discrete number of players. The arguments in their proof establish that there is a
unique equilibrium in which investors redeem at t = 1 if and only if the signal they
receive is below a common threshold θ∗, which is the signal at which an investor is
indifferent between redeeming at t = 1 and t = 2 given what he or she believes about
the signals received by other investors and, in turn, their behaviors.

We start by characterizing investors’ decisions in two extreme ranges of fundamen-
tals where investors have a dominant action. These two ranges correspond to the one
characterized in Proposition 1. When θ < θ redeeming at t = 1 is a dominant action
and we refer to this range as the lower dominance region. When θ > θ, redeeming
at t = 2 is the dominant action and we refer to this range as the upper dominance
region.

Consider now the intermediate region where θ ∈ [θ, θ]. Assume that investors
behave according to a threshold strategy: they redeem their shares if they receive a
signal below θ∗ and stay until t = 2 otherwise.11 Given that the signal is uniformly
distributed over the interval [−η,+η], the probability of receiving a signal below θ∗ is
θ∗−θ+η

2η
. Building on this, we can compute the share of investors receiving the signal

11This comes at no loss of generality, as Goldstein and Pauzner (2005) show that in this game
every equilibrium strategy is a threshold strategy.
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below the cutoff, which is given by

w =
A∑
i=1

{θi < θ∗} ∼ Binomial

(
A,

θ∗ − θ + η

2η

)
. (A1)

It follows that the probability that W out of A investors have received a signal below
θ∗ is given by:

f(W,A) =

(
A

W

)(
θ∗ − θ + η

2η

)W (
1− θ∗ − θ + η

2η

)A−W

. (A2)

Using the above, we can compute the probability that the investor receiving the signal
θ∗ assigns to n out of A− 1 investors redeeming at t = 1 as:(

A− 1

W

)
2η

∫ θ∗+η

θ∗−η

(θ∗ − θ + η)W (θ − θ∗ − η)A−1−W

(2η)A−1
dθ (A3)

As shown in Morris and Shin (2002), this probability is equal to 1
1+A−1

. Hence, the
indifference condition that characterizes the run threshold θ∗ reads:

A−1∑
W=0

1

A

N −W (1 + λ)

N −W
R1Rθ = R1, (A4)

which gives the expression (2) in the proposition.

Proof of Proposition 3. The proof is straightforward and entails replicating the
analysis of the previous two propositions using R2(θ) as specified in (4). Since for
any θ, the return is simply Rθ and investors are risk neutral, all thresholds are exactly
as in the previous two propositions.
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Appendix B. Prompts to generate DAGs

In this appendix, we provide the prompts used to generate the DAGs from the output
json files. Prompt 4 provides the prompt used to produce the DAG with (i) a single
investor (Figure 5), (ii) multiple investors and no payoff uncertainty (Figure 7), and
(iii) multiple investors with fundamental uncertainty (Figure 13). To generate the
DAG to depict the mental model used by LLMs to handle payoff uncertainty (Figure
9), we used Prompt 5.

1 You are given a JSON file from a simulation. The file

contains: "actions ": 0 = stay , 1 = redeem , "

llm_responses" and "explanations ": reasoning text ,

parameters such as θ, R, λ, N , number of active/passive

investors. Your task is to produce a Mermaid DAG that

cleanly summarizes the reasoning process for a typical

investor.

2

3 Instructions:

4 Include three main sections only:

5 - Context: key parameters , information and setup

6

7 - Reasoning & belief: payoff comparison and threshold

calculation

8

9 - Action: belief evaluation and aggregated final actions.

10

11 Show branching at the decision node only if needed:

Optimistic (W < Wcrit), Pessimistic (W > Wcrit),

Uncertain (W ∼ Wcrit).

12

13 Keep node labels short (≤ 10 words).

Prompt 4: Basic DAG generation prompt
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1 You are given a JSON file from an experiment with payoff

uncertainty. The file contains explanations for the

decisions. Extract the steps for how investors handle

the payoff uncertainty. Summarize those steps in a

Mermaid DAG under a single section titled ‘‘Handling

Payoff Uncertainty ’’. Each node should include ≤10

words. Do not consider how strategic uncertainty is

handled.

Prompt 5: Prompt to generate DAG depicting handling of payoff uncertainty
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Appendix C. Fund illiquidity and payoff

uncertainty at date 1

In this section, we relax the assumption concerning fund illiquidity and assume that
A > N

1+λ
. This implies that in the presence of a sufficiently large number of early

redemptions, i.e., when W ≥ W ≡ N
1+λ

, the fund liquidates its entire portfolio at date
1 and defaults. In this circumstance, we assume that early redeeming investors receive
nothing due to the presence of full bankruptcy costs. This modification relative to
the benchmark model introduces payoff uncertainty at date 1 and, thus, allows us to
check whether our results concerning to the Q-algorithms’ behavior in the presence
of payoff uncertainty are robust.12 As it will become useful for the characterization
of the case with fundamental uncertainty, in line with the literature, e.g., Goldstein
and Pauzner (2005), we assume that when θ = 1, λ = 0 and the liquidation value of
the fund’s investment jumps to R. This implies that when θ = 1, it is a dominant
action for the investors not to redeem at date 1.

To isolate the role of payoff uncertainty at date 1, we characterize the equilibrium
assuming that the bank’s investment returns Rθ at date 2, i..e, no payoff uncertainty
at the final date. We proceed as in the main text, deriving first the equilibrium in
the absence of fundamental uncertainty (i.e., θ is observable) and then assuming that
investors receive an imperfect private signal on θ of the form θi = θ + ϵi, with ϵi ∼
[−η,+η]. The following proposition characterizes the equilibria in the two instances.

Proposition 4: When the fundamentals θ are observable, all investors redeem at t = 1
when θ ≤ θ ≡ 1

R
and stay until t = 2 when θ = 1. In the range θ ∈ (θ, 1), redeeming

at date 1 and at date 2 are both equilibria.
When the fundamentals θ are not observable, model has a unique symmetric Bayes-

Nash equilibrium in threshold strategies that is characterized by a critical signal

θ∗ =

∑W
W=0

W∑
W=0

N−W (1+λ)
N−W

R

, (C1)

such that an investor will redeem their share at t = 1 if and only if their signal is
below θ∗.

Proof. The proof follows closely that of Proposition 1 and 2, with the only difference
that, in the case of fundamental uncertainty, the indifference condition giving θ∗ is

12Notice that the assumption of full bankruptcy costs give rise to a payoff structure that is akin
to the case where early redeeming investors are repaid according to a sequential service schedule.
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equal to:
W∑

W=0

1

A

N −W (1 + λ)

N −W
R1Rθ =

W∑
W=0

1

A
R1. (C2)

The p-dominance threshold in the presence of payoff uncertainty at t = 1 θRD

solves u1 = u2 evaluated at p = 1
2
, where

u1 = R1

W∑
W=0

(
A− 1

W

)
pW (1− p)A−1−W ,

and

u2 = R1

W∑
W=0

(
A− 1

w

)
pW (1− p)A−1−WRθ

N −W (1 + λ)

N −W
.
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