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Abstract

Does artificial intelligence (AI) pose a threat to financial stability? This pa-
per develops a simulation-based framework to study how AI agents behave in
a mutual-fund redemption game with strategic complementarities and multi-
ple equilibria. Different AI technologies, namely Q-learning (QL) algorithms
and large language models (LLMs), generate distinct redemption profiles. QL-
investors coordinate among themselves but exhibit a bias toward excessive early
redemption that amplifies fund fragility. LLM-investors instead internalize the
equilibrium structure of the problem and better align with theoretical predic-
tions. However, their belief heterogeneity weakens coordination, thereby mak-
ing their redemptions less predictable. Thus, our findings highlight that the

design of Al systems is material for financial stability.
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I. Introduction

In ancient Greek tragedy, when a plot reached an impasse, a mechanical crane would
lower actors playing gods onto the stage to impose a resolution, a device later known
as deus ex machina. Two and a half millennia later, our growing reliance on artificial
intelligence (AI) to navigate financial complexity and uncertainty invites a compar-
ison. Will AI become the deus ex machina of modern finance, or will it instead
threaten financial stability? This paper investigates this question.

Al is playing an increasingly central role in modern finance. For example, the
release of a large language model (LLM) by DeepSeek has spurred an Al arms race
amongst other hedge funds and mutual funds in China to automate the processing
of market data and the generation of trading signals (Reuters, 2025). This trend
extends to the retail sector, where industry reports suggest that Al-enabled appli-
cations that autonomously generate financial advice will be the leading source for
investors by 2027 (MIT Sloan, 2024; Deloitte, 2024). The frontier is now shifting
toward fully agentic Al, autonomously executing tasks, adapting to new information,
and coordinating with other systems under minimal human oversight in areas like
fraud detection and transaction management (Nvidia, 2025; Financial Times, 2025).
This clear progression towards more sophisticated autonomous Al raises a central
question: How will these systems behave in complex environments with strategic and
economic uncertainty?

A growing literature offers some insights. In pricing games, Q-learning algorithms
have been shown to sustain tacit collusion, even when standard theory predicts com-
petitive outcomes (e.g., Calvano et al., 2020; Colliard et al., 2025; Dou et al., 2025).
This shows that AI can learn sophisticated, nontrivial strategies without explicit
communication or intent. Yet, most of these studies focus on settings with a unique
equilibrium, where learning places limited demands on strategic reasoning. Events
such as bank runs and financial market freezes are, in contrast, shaped by multiple
equilibria driven by strategic complementarities: investors’ actions depend on their
beliefs about others’ behavior (Diamond and Dybvig, 1983). In such environments,
panic-driven crises can emerge with large economic costs (Reinhart and Rogoff, 2009).
Furthermore, because beliefs respond to fundamentals, equilibrium selection varies
with economic conditions (Goldstein and Pauzner, 2005).

This paper studies how different types of Al agents behave in such environments



and the implications for financial stability. To this end, we consider a stylized model
of mutual fund redemptions based on Chen et al. (2010), in which AI agents de-
cide whether or not to redeem their shares. Using a simulation-based experimental
setup, we show that reinforcement learning agents tend to converge on coordinated
strategies, but their learning dynamics bias them toward redeeming their shares, so
they often coordinate on inefficient outcomes characterized by excessively high asset
liquidations. By contrast, reasoning-oriented LLM agents use context: rather than
relying solely on trial-and-error, they interpret the game structure and adapt ac-
cordingly. This keeps them close to theoretical benchmarks and prevents systematic
over-redemption, but heterogeneity in their beliefs hinders their ability to coordinate
on equilibrium outcomes. Our result thus highlights that the design of Al systems
matters for financial stability: reinforcement learning promotes coordination but at
the expense of financial stability, whereas LLM reasoning improves stability, but het-

erogeneity in beliefs makes the outcomes more difficult to predict.

Framework We build on a canonical mutual fund run model (Chen et al., 2010),
a parsimonious variant of the models in Diamond and Dybvig (1983) and Goldstein
and Pauzner (2005), that delivers multiple redemption equilibria.! The model yields
theoretical predictions about equilibrium behavior, which we use as a benchmark for
evaluating Al agents’ decisions and their effects on financial stability.

In the model, investors choose whether to redeem their shares before the fund’s
investment project matures. Their payoffs depend on both economic fundamentals
and the actions of other investors. Strategic complementarities imply that the incen-
tive to redeem rises when more investors do so, while stronger fundamentals reduce
the appeal to redeem. We examine equilibria under two dimensions of uncertainty:
(i) payoff uncertainty, contrasting whether the fund’s returns are risky or risk-free,
and (ii) fundamental uncertainty, where investors may or may not observe the true
underlying fundamentals.

With these results in hand, we design an experiment that replaces investors with
AT agents to test whether they replicate the model’s equilibrium predictions. We use
two types of agents: Q-learning algorithms that learn through trial and error, and

large language model (LLM) that make decisions using contextual understanding and

"While our focus is on mutual fund redemptions, the insights extend to other environments with
similar strategic complementarities and payoff structures, such as bank runs and currency crises.



chain-of-thought reasoning. The experiment is built around four core predictions from
the theoretical model. When there is no uncertainty, investors should redeem when
fundamentals are weak, stay when fundamentals are strong, and exhibit multiple pos-
sible outcomes when fundamentals are in between, i.e., either everyone redeems or
everyone stays. Second, the share of redemptions should not be affected by the payoff
uncertainty since only expected returns matter. Third, with fundamental uncertainty,
equilibrium behavior should take the form of threshold strategies, with investors re-
deeming whenever their private signal falls below a critical cutoff. Finally, financial
fragility, defined as early inefficient redemptions in excess of the first-best level, should

increase as markets become more illiquid.

Results We find consistent differences between reinforcement-learning and reasoning-
based AI agents in environments with strategic complementarities.

First, in the absence of uncertainty, both types of investors reproduce the domi-
nance regions predicted by theory: all redeem when fundamentals are weak, all stay
when they are strong. However, in the intermediate range, behavior diverges. Q-
learning (QL)-investors converge to a sharp threshold rule, effectively collapsing mul-
tiplicity into the risk-dominant equilibrium. In contrast, LLM-investors, who have
heterogeneous beliefs about the actions of other investors, exhibit less coordination
on equilibrium outcomes, resulting in partial redemptions.

Second, on introducing payoff uncertainty, LLM-investors continue to align with
the theoretical benchmark: by reasoning in expected-value terms, they treat the en-
vironment as equivalent to one without payoff uncertainty. QL-investors, however,
display a systematic bias toward redemption. Their learning dynamics penalize stay-
ing whenever a zero return is realized, which drives Q-values below the true expected
payoff and pushes them toward inefficient redemptions.

Third, with fundamental uncertainty, LLM-investors recognize the problem as a
global game and coordinate around the theoretical panic threshold. QL-investors, by
contrast, exhibit a over-redemption when signals are noisy. Heterogeneity in private
signals generates disagreement that lowers the payoff from staying, thus reinforcing
the bias toward redemption. However, unlike the scenario with payoff uncertainty,
their behavior converges to persistent partial redemptions—an equilibrium outcome
consistent with theory, but inefficient relative to the first best.

Finally, for LLM-investors, fragility rises monotonically with illiquidity, thus closely



tracking the theoretical benchmark. For QL-investors, the relationship is more com-
plex: with precise signals and no payoff uncertainty, outcomes align with theory; with
noisy signals or payoff uncertainty, fragility increases, and its sensitivity to illiquidity
depends on the interaction of these two sources of uncertainty.

Taken together, these results highlight a central tradeoff: reinforcement learn-
ing promotes coordination but at the expense of financial stability, whereas LLM
reasoning improves stability by anchoring to theoretical benchmarks, but reduces co-
ordination through heterogeneous beliefs. A key implication is that the design of Al
systems is not neutral — different approaches shape market dynamics in systematically
different ways, and therefore the stability of the financial system critically depends

on how Al agents are built.

Literature Our paper contributes to several strands of literature at the intersection
of Al and finance. First, it advances the emerging work on Al and financial stabil-
ity, a topic that has attracted growing attention from policymakers (Shabsigh and
Boukherouaa, 2023; Aldasoro et al., 2024; Financial Stability Board, 2024; Leitner
et al., 2024; Bank of England, 2025) but has only recently begun to receive system-
atic treatment in academia. Notable contributions include Danielsson et al. (2022)
and Danielsson and Uthemann (2025), who examine channels through which AT may
generate or amplify systemic risk and crises. We move this agenda forward by provid-
ing an experimental, model-grounded assessment of Al in a canonical coordination
game with multiple equilibria. In a multiagent mutual fund framework, we compare
distinct AI technologies across economic conditions that vary payoff risk and informa-
tion. This design allows us to isolate the key economic drivers that shape Q-learning
behavior and LLM reasoning, and to map how these drivers determine equilibrium
selection and the level of fragility. Our study is related to Yang (2024), who shows
that Q-learning can trigger currency attacks in a two-agent setting under alternative
information structures. Relative to that work, we focus on a mutual fund withdrawal
game with many interacting agents, and we conduct a head-to-head comparison of Al
architectures to identify how technology choice and environment interact to produce
fragility.

We also add to the growing literature that uses Al simulations in financial settings.
Several papers use reinforcement learning to study asset pricing and trading: portfolio

choice (Cong et al., 2023), liquidity provision (Colliard et al., 2025), and speculation



(Dou et al., 2025). We shift the focus from performance to mechanism by examining
what drives Al agents’ choices and what that implies for financial stability.

More broadly, our paper contributes to the economics of Al. Beginning with Cal-
vano et al. (2020), much of this literature has examined pricing algorithms and doc-
umented emerging collusion in a variety of settings (Banchio and Mantegazza, 2022;
Banchio and Skrzypacz, 2022; Cont and Xiong, 2024). Collusive outcomes also appear
in many of the finance applications noted above, including our own. In our setting,
however, collusion has a more nuanced interpretation; it is a mechanism through
which Al agents resolve coordination failures. This interpretation links algorithmic
“collusion” to equilibrium selection rather than illicit intent, and it helps explain
why machine behavior can be predictable even in environments that admit multiple
equilibria.

Along similar lines, we add to the growing literature that examines LLM agents as
decision-makers in economic and strategic contexts. Recent work shows that LLMs
can participate in strategic experiments (Horton, 2023), sustain cooperation in re-
peated games (Akata et al., 2023), and serve as stand-ins for human subjects with
promising fidelity (Anthis et al., 2025). With appropriate prompts, LLMs can emu-
late investors (Fedyk et al., 2024), bank depositors (Kazinnik, 2023), and loan officers
(Cook and Kazinnik, 2025); they can also serve as proxies for survey respondents
(Hansen et al., 2024) and replicate human-like macroeconomic expectations (Bybee,
2023; Zarifhonarvar, 2024). Within finance, Lopez-Lira (2025) introduce an open-
source framework that pits LLM trading agents against value investors, momentum
traders, market makers, and contrarians, while Gao et al. (2024) show that heteroge-
neous LLM-investors produce price dynamics that mirror observed markets. Bhagwat
et al. (2025) elicit beliefs from LLM-investor personas and find that disagreement
about firm news both tracks abnormal trading volume and predicts a subsequent re-
turn premium. We build on these advances by placing LLMs in a classic withdrawal
game and comparing their behavior with that of reinforcement learners, thereby clar-
ifying how explicit reasoning, as opposed to implicit learning, affects equilibrium
selection and fragility.

Finally, we contribute to the literature on financial fragility. Following the seminal
work of Diamond and Dybvig (1983), this literature has extended to other financial
institutions subject to strategic uncertainty, such as mutual funds (Chen et al., 2010),
hedge funds (Liu and Mello, 2011), credit markets (Bebchuk and Goldstein, 2011),



life insurers (Foley-Fisher et al., 2020) and stablecoin issuers (Gorton et al., 2025),
among others. Despite rich theory, credible empirical evidence remains scarce, with
Goldstein et al. (2017) and Chen et al. (2024) as notable exceptions. We open a
new research avenue by experimentally testing theories of financial fragility using Al
agents, allowing fine-grained control over information, payoffs, and strategic interac-
tion, and showing clear links among market fundamentals, algorithmic design, and
systemic risk.

The rest of the paper proceeds as follows. In Section I, we present a stylized
theoretical framework characterized by strategic complementarities and derive the
prediction that we test in the experiments with Q-learning algorithms and LLMs. In
Section III, we describe the experimental environment for both Al types. The results

of the simulations are reported in Section V. Section V concludes.

II. Theoretical Framework

In this section, we characterize equilibria in a stylized coordination game building on
Chen et al. (2010), and derive testable predictions. Proofs appear in Appendix A.
The economy extends over two dates, t = 1 and t = 2, and consists of a mutual fund
and N > 2 risk-neutral investors. Before t = 1, each investor holds one share of unit
value, so the fund’s total size is N.

The book value of the fund’s investments at ¢t = 1 is Ry N, which is common
knowledge. At t = 2, the per-unit investment return is Ry(6) = R6f. This spec-
ification captures an equity fund, in which investors hold a pro rata claim on the
portfolio’s period-2 payoff. The variable 6 represents the fundamental of the econ-
omy and positively affects fund’s investment return at ¢ = 2.? Tt is uniform on [0, 1]
and drawn at the beginning of t = 1.* In what follows, we distinguish between two
informational environments regarding the fundamental: (i) no fundamental uncer-
tainty, where 6 is common knowledge; and (ii) fundamental uncertainty, where each
investor, i, receives a noisy private signal s; = 0 + ¢;, with ¢; i.i.d. across agents and

uniformly distributed over the interval [—n, n].

2In Chen et al. (2010) 6 is a measure of the fund performance. The two definitions are clearly
linked, as better fundamentals can be associated with improved fund performance. For the purpose
of our exercise, the precise definition is immaterial.

3 Assuming uniformity is without loss for our results: they hold for any strictly increasing mapping
R(0).



At the beginning of ¢ = 1, a number A < N of investors are active, and choose
whether to redeem their shares or stay until ¢ = 2. Investors who redeem their
shares receive the current value R;. However, in order to service redemptions, the
fund must liquidate assets, which is costly. Specifically, to raise Ry, the fund must
liquidate (1 + \)R; units of assets, where A\ > 0 is a measure of illiquidity: the higher
A, the greater the share of assets that must be liquidated to service redemptions.
Following Chen et al. (2010), we assume that A < 1%\, implying that the mutual
fund has enough resources to meet the redemptions of all the A active investors at
t = 1. Thus, all investors who redeem their shares receive R; for sure.*

Denoting the number of investors who redeem by W, an investor who decided to

stay receives
N WL+
N -W

The payoff from staying is increasing in €, but is decreasing in both asset illiquidity

R.RY. (1)

A and the number of redemptions, W.

A.  Characterizing the Equilibria

We focus on characterizing equilibria in pure strategies. As a benchmark, we first
consider the case without fundamental uncertainty when 6 is common knowledge.
Following standard lines of reasoning (Morris and Shin, 1998), we can partition the
space of the fundamental into three intervals, which we report in Proposition 1 and

Figure 1.

Proposition 1: In the absence of fundamental uncertainty, equilibrium outcomes de-
pend 6. For sufficiently extreme values of 0, there exists a unique Nash equilibrium

i pure strategies, while for intermediate values multiple equilibria arise. Specifically,

o if<f= %, the unique equilibrium is that all investors redeem at t = 1;
o iff>0= %%, the unique equilibrium s that all investors stay until
t=2;

e if0c[0,0], both “all redeem” and “all stay” are equilibria.

An important prerequisite for the emergence of multiple equilibria is illiquidity.

When the portfolio is perfectly liquid, i.e., A = 0, asset liquidation does not impose

N

4The derivations for the case with illiquidity, i.e, when A > T

are in Appendix C.
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Figure 1: Equilibria without Fundamental Uncertainty

additional costs on the fund and investors who stay. The expected return from staying
is independent of early redemptions. This implies that redeeming at ¢ = 1 is the
strictly dominant action for 8 < @, while staying is strictly dominant for > #. From
a welfare perspective, this is the efficient redemption strategy, since only negative
NPV investments are liquidated. Hence, the threshold 8 also denotes the first-best
redemption strategy.

In contrast, when A\ > 0, redemptions no longer reflect solely the liquidation of
unprofitable assets. In this case, the expected payoff difference between staying until
t = 2 and redeeming at ¢t = 1 decreases monotonically with the number of investors
who redeem. As a result, even when fundamentals are sound (i.e., above 0), investors
have an incentive to redeem if they expect others to do so. Put differently, redemption
decisions are strategic complements: the incentive to redeem strengthens when others
are expected to redeem. This strategic complementarity generates multiple equilibria
in the intermediate region [6, 6].

Next, we consider the case with fundamental uncertainty, i.e., investors do not
observe the realized 6 but instead receive noisy signals. We follow the global game
literature (Carlsson and Van Damme, 1993; Goldstein and Pauzner, 2005) and study
how investors make their redemption decisions based on the signals. Proposition 2

characterizes the equilibrium, which is also illustrated in Figure 2.

Proposition 2: With fundamental uncertainty, there exists a unique symmetric Bayes-

Nash equilibrium in threshold strategies that is characterized by the threshold signal

. A
0" = A-1 N-W(Q+A) p’ (2)
W=0" N-W

such that an investor redeems if and only if his signal is below 6* € (6,0). For a given

realization of the fundamental 0, the share of investors who redeem their shares at



t=11s

0 if 0>0"+n
w'(0,07) = Ui g [6r 0%+ (3)
1 it 0<60*—n

The introduction of private information yields a unique equilibrium characterized
by a threshold signal 6*. This threshold determines the probability of redemption
across investors. For fundamentals in the range 0§ < 6 < 6*, redemptions are driven
by panic rather than weak fundamentals and are therefore inefficient. In this region,
investors redeem not because redemption is a dominant strategy, but because the
fundamental is weak enough to make each investor fear that others will redeem as
well.

The threshold signal #*, and in turn the average number of investors redeeming
their share, depends on the underlying economic parameters. In particular, 6* in-
creases with the illiquidity parameter \. When A is large, the fund must liquidate
more assets to meet redemptions at ¢ = 1, which reduces the payoff from staying.
This strengthens investors’ incentive to redeem early, thereby raising 6*.

The results in Propositions 1 and 2 are derived under a specific assumption about
the investment return at ¢ = 2. As discussed above, the specification Ry(0) = R0
corresponds to the case of an equity fund. An alternative is a fund investing primarily

in debt securities, i.e., a bond fund. In that case, the return at ¢t = 2 takes the form

R with prob ¢
Ry(0) = (4)
0 with prob1—6

Relative to the equity-fund specification, this introduces payoff uncertainty: investors
may receive zero even when fundamentals are favorable. By contrast, under the
equity-fund specification there is no payoff uncertainty, since the payoff is determin-
istic given # and is strictly positive whenever § > 0. Proposition 3 establishes that

this distinction does not affect the theoretical results.

Proposition 3: The results in Propositions 1 and 2 remain unchanged when the fund’s

return at t = 2 is given by Equation (4).

This irrelevance follows from investors’ risk neutrality: only the expected payoff

matters for redemption decisions, and this expectation is identical across the two

10
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Figure 2: Equilibria with Fundamental Uncertainty

specifications and equal to R/2. What differs is the presence or absence of payoff
uncertainty. In the equity-fund case (without payoff uncertainty), investors receive
zero only when 6 = 0. In the bond-fund case (with payoff uncertainty), investors may

receive zero even when fundamentals are strong.

B. Testable Predictions

Based on the characterization of the equilibria, we draw the following predictions.
With common knowledge about 6, Proposition 1 highlights the tri-partite classifica-
tion of the fundamental, with multiple equilibria emerging for intermediate values of

0. Multiple equilibria emerge because investors’ beliefs over others are indeterminate.

Prediction 1: Without fundamental uncertainty, all investors: (i) redeem their shares
when 6 < 0 and (i) stay when 6 > 0. In the intermediate range, both “all redeem”

and “all stay” are equilibria.

Since the characterization of the equilibria only depends on the expected return
at t = 2, payoff uncertainty is irrelevant, as highlighted in Proposition 3. This result

is the basis for our next prediction.

Prediction 2: Investors’ redemption flows are not impacted by the introduction of

payoff uncertainty.

With fundamental uncertainty, Proposition 2 shows that there is a unique signal
threshold equilibrium characterized by 6* and, for any given 6, the share of investors
who redeem is given by w*(6,6*). Our next prediction concerns the signal threshold

and how signal precision impacts investors’ redemptions.

Prediction 3: With fundamental uncertainty, investors use threshold strategies, i.e.,
redeem whenever their private signal is below the critical threshold 6*. The share of

investors who redeem is given by w*(0,0*), which is decreasing in signal precision.

11



Redemptions are inefficient unless fundamentals 6 are so low that redeeming is a
strictly dominant action. This motivates our definition of fragility as the extent of
inefficient, panic-driven redemptions. With fundamental uncertainty, fragility is mea-
sured by the expected number of redemptions that occur when 6 > 6. Formally, this
corresponds to the share of early redemptions w* (6, 6*) defined in Equation (3). The
cutoff @ serves as the first-best benchmark: above @, efficient behavior would entail
no redemptions, so any observed redemptions reflect fragility. Since 6 is independent
of A\, while #* (and thus w*(0,6*)) increases with the liquidation cost A, we obtain

the following prediction.

Prediction 4: Fragility increases monotonically with fund illiquidity.

ITI. Experimental Design

Our primary goal is to explore the impact of Al-based investors on financial stability.
To this end, we construct a simulation-based experimental setup where we replace
the investors from the theoretical model with algorithmic counterparts. We consider
two distinct types of Al-based investors: Q-learning (QL) investors, who optimize be-
havior through trial-and-error and reward updating; and LLM-investors, who reason
contextually using chain-of-thought inference.

To ensure comparability, both types of investors are evaluated under the same
economic environment. There are A = 30 active investors out of a total of N = 50.
The investment returns are R; = 1 and R = 2. The illiquidity parameter A\ is drawn
from an equally spaced seven-point grid spanning [0.05,0.35]. The fundamental 6 is
drawn from an equally spaced twenty-five-point grid spanning [0.4, 1], a range that

includes both dominance bounds 6 and 6.

A, Q-learning Algorithm

We first consider QL-investors, implemented via the Q-learning algorithm. Q-learning
is a standard reinforcement-learning method in which agents, without prior knowledge
of the payoff structure, learn action values through trial-and-error interaction with the
environment. By repeatedly updating these values across episodes, agents eventually
converge toward a stable policy that approximates optimal behavior.

The algorithm has four components:

12



1. States: The state 0; for each QL-investor ¢ is derived from the information
that they receive, i.e., either the true fundamental 6 or the noisy signal s;. As
Q-learning requires a finite state space, this continuous information is mapped
to a discrete classification, which constitutes the effective state of the algorithm.
The set of all states is denoted ©® C N.

2. Actions: The action set is binary, A = {ag, as}, where ag denotes “redeem”

and ag denotes “stay.”

3. Rewards: The reward function 7(6, a) assigns a payoff based on the realization
of the fundamental  and the chosen action a. Crucially, QL-investors do not

observe the underlying mapping (6, a) — 7 but only the realized rewards.

4. Episodes: Learning unfolds over T episodes. In each episode, QL-investors
observe their state, choose an action, and update their Q-values based on the

realized payoff.

Each QL-investor ¢ = 1,..., A starts episode ¢t = 1,...,T with a Q-matrix @);; €
RI®*2 with rows for states and columns for actions. Following the realization of the
state 0;,, the action is determined according to an e-greedy policy: with probability
g, = ¢, the QL-investor explores by randomizing between ap and ag, while with the
complementary probability 1 — ¢;, the QL-investor exploits by choosing the action
that maximizes Q;+(6;+, a).

If the chosen action is aj, = ag, the reward is 7(0, ag) = R;. If instead a;, = as,
the reward depends on @ (the true fundamental) and the other QL-investors’ actions

and is given by Equation (1). The Q-matrix is then updated as

Qiﬂf-&-l(gi,tv a;t) =(1- Q)Qz‘,t(ez',m af,t) + an (0, af,t)a (5)

where « € [0,1] is the learning rate: higher « places more weight on new rewards,
while lower o smooths learning over past experience. Figure 3 summarizes the itera-
tive process.

In our simulations, we set 5 = 0.99999, a = 0.1 and [©| = 75. We run 25
independent rounds of training, each with 7" = 500, 000 episodes. For these hyperpa-
rameters, each QL-investor experiments approximately 100,000 times in expectation,

which corresponds roughly to 1/5 of total episodes.”

SConsistently with Colliard et al. (2025), we fix the hyperparameters and only perform compar-

13



1—¢ Exploitation
a;j; = argmax Q; (0, a)

ae{aR7aS}
QL-investor i
Exploration
Start episode t € Randomize a;, € {ar,as} Reward
0 and 6, realized (0, a,)
Exploit
QL-investor j —
Explore

Updating Q-matrix

Qity1(bir,a7y) = (1 — a)Qi(0iy, ajy)
—|—oz7r(0,a”)

Iterate to episode t 4 1

AN

Figure 3: Iterative Process of Q-learning

B.  Reasoning LLMs

Large language models (LLMs) are designed to predict the next word (or “token”) in
a sequence of text. Unlike the Q-learning algorithm, where parameters are updated
through repeated trial-and-error, LLMs do not change their parameters when generat-
ing outputs. Instead, they rely on context-based inference: they read the information
given in a prompt, identify relevant patterns, and use this to produce their response.
Thus, rather than learning gradually through experience, LLMs adapt their behavior
directly from the environment they are presented with.

Here, we consider LLM-investors, whose decision process differs fundamentally
from QL-investors. Instead of learning through numerical rewards, LLM-investors
rely on context-based inference to decide whether to redeem or stay.

We use DeepSeek’s state-of-the-art reasoning model, R1. A recent class of large

ative statics exercises with respect to economic variables (e.g., \). Modifying the hyperparameters
in a way that is meaningful from an economic perspective would involve not only taking a stance
on what their optimal value is, but also making assumptions about the preferences and objective
functions of the agents coding the algorithms.

14



language models has been designed to deliberate, breaking down problems into in-
termediate steps and evaluating their reasoning before producing an answer. This is
typically implemented through chain-of-thought style traces, verifier loops, and reflec-
tion. Like other large language models, R1 is based on the transformer architecture
and generates text by predicting the next token. Reasoning models build on this foun-
dation by explicitly optimizing for step-by-step decomposition and self-verification
using the chain of thought approach. Several such models are now available, includ-
ing OpenAl’s 03 and Google’s Gemini 2.5 Pro. A key advantage of DeepSeek’s R1 is
that it provides direct access to the full chain-of-thought, enabling us to reconstruct
the “mental model” behind each investor’s decision. It is also an open-source model,
supporting transparency and replicability.’

The experiment unfolds in two stages. First, we design the prompts. Each prompt
distills the economic environment into a concise, textual description that specifies the
investor’s objective, the structure of payoffs, and the information available. The base-
line version (Prompt 1) presents a world without uncertainty, neither in fundamentals
nor in payoffs. To introduce payoff uncertainty, we modify line 3, as shown in Prompt
2. To introduce fundamental uncertainty and private signals, we append additional
information after line 9, as detailed in Prompt 3.

Next, we run the model. Each prompt is instantiated with the relevant param-
eters and submitted to the DeepSeek R1 model via an API call. Every investor is
represented by a separate, independent call to the model. To encourage consistent
behavior, we set the temperature hyperparameter to zero, reducing randomness in

7

the outputs.” For each Al investor, we collect both the generated explanation and

the final decision, which together determine the payoff.

6For a broader discussion on the use and evaluation of open-source LLMs, see Cook et al. (2023).
"The temperature setting controls the degree of randomness in the model’s responses: a value
near zero yields deterministic and focused outputs, while higher values introduce more variation.
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1 You are one of A=\Yd active investors in a mutual fund out
of a total of N=\%d investors. Each investor holds one
share. Your goal is to maximize your return.

2 If you redeem your share, then you earn R1.

3 If you do not redeem your share, i.e., you stay, then you

earn fraction * Rl * R * \theta, where:

4 - fraction = (N - W * (1 + X)) / (N - W) is the fraction
of assets remaining in the fund after serving
redemptions;

5 —-— W < A-1 is the number of other active investors who
redeem (the remaining N - A investors are passive and
never redeem) ;

6 - A (lambda) = \%f is the illiquidity parameter;

7 - R1 = \%f is the value of the share if you redeem;

s - R = \/f is the return earned by the fund from managing
its portfolio;

o - 6 (theta) = \%f is the fundamental, which measures the
fund’s performance.

10 Do you choose to redeem your share or stay? State your

decision with exactly one word: ¢‘redeem’’ or ‘‘stay’’

using the XML tag <decision>...</decision>.

Prompt 1: No Fundamental Uncertainty or Payoff Uncertainty

3 If you do not redeem your share (i.e., you stay), then
with probability 6 you earn fraction * R1 * R, and

otherwise you get 0, where:

Prompt 2: Payoff Uncertainty Add-on
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10 The fundamental value f (theta) of the fund is randomly
drawn from the interval [0,1] but you do not directly
observe it. All values of # are equally likely.

11 Instead you receive a private signal x_i defined as x_i =
0 + e_i, where e_i is drawn uniformly from [-7,7] with 7
= \%f. Signals of different investors are drawn
independently. Your private signal is x_i = \%f.

12 Do you choose to redeem your share or stay? State your

¢ ¢

decision with exactly one word: ‘‘redeem’’ or stay’’

using the XML tag <decision>...</decision>.

Prompt 3: Fundamental Uncertainty Add-on

We subsequently iterate for the values of the illiquidity parameter and fundamental
from the prespecified grid. We repeat this process for three independent rounds to
generate statistical properties and construct confidence intervals around the outcomes.

To analyze the decision-making of LLM-investors, we use a second LLM as an
analyst that converts the investors’ explanation into directed acyclic graphs (DAGs).®
The analyst LLM decomposes the explanations into three sub-graphs: context (inputs
such as the economic environment, number of players, and payoff rules), reasoning
(the intermediate logical or computational steps), and decision (the final action). We
then compile the extracted variables, assumptions, and equations into a DAG that

encodes functional dependence (nodes) and information flow (directed edges).

IV. Experimental Results

In this section, we report the results of our experiments with QL and LLM-investors
to test our theoretical predictions. Before exploring the experiments in detail, it is
instructive to consider the behavior of a single investor without fundamental or payoff
uncertainty in order to isolate and highlight the role of strategic uncertainty. Figure 4

plots the withdrawal decision of a QL-investor and a LLM-investor as a function of the

8A DAG consists of nodes (variables, computed quantities, or decisions) and directed edges
indicating the direction of influence or information flow. For a recent example of using DAGs to
analyze LLM reasoning, see Bybee (2023).
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Figure 4: Decision of a single investor as a function of the fundamental, without
fundamental or payoff uncertainty.

fundamental § for A = 0.25.° Both types of investors behave largely in accordance
with theory: in the absence of strategic uncertainty, the first-best equilibrium is
obtained, with the decision to switch from redeem to stay occurring around the first-
best threshold, 8 = }% = 0.5. Changes in the illiquidity parameter play no role, since
6= % is independent of .

Figure 5 shows the reasoning structure inferred from one LLM-investor’s explana-
tion for € = 0.55. The DAG begins with contextual inputs: the payoff from redeeming
is fixed at 1, and the investor recognizes that it is the sole active participant, so no
other investors redeem. From this, the reasoning proceeds to compute the payoft
from staying, which equals 1.1. The model then compares the two options, noting
that 1.1 > 1.0, and concludes that staying yields the higher return. This inference

flows into the decision sub-graph, where the investor chooses to stay.

9In all subsequent figures we set A = 0.25 unless otherwise specified.
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Context Redeem payoff = 1.0 One active investor No other active investors

S o

Others redeeming (W) = 0

I

Stay payoff = 1.1

Reasonin;\\\\‘\\\\\\\$ k///)

1.1>1.0
& beliefs

Staying yields higher return

I

Decision Decision: Stay

Figure 5: Reasoning structure for the LLM-investor. The DAG was constructed based
on the explanation in the experiment with 6§ = 0.55.
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A.  Coordination and Multiple Equilibria

Next, we turn to our analysis of experiments with multiple investors (A = 30) si-
multaneously choosing to redeem or stay in the absence of fundamental uncertainty.
Figure 6 plots the share of investors who redeem as a function of the fundamental in
the absence of payoff-uncertainty and for A\ = 0.25. Within the dominance regions,
investors perfectly coordinate on the Nash equilibria predicted by the theory. So,
when the fundamental is weak, i.e., # < @, they all redeem, while when fundamentals
are strong, i.e., § > 6, they all stay. In the intermediate region, however, differ-
ences emerge. While QL-investors continue to coordinate on equilibrium outcomes,
LLM-investors find it more difficult to coordinate leading to intermediate levels for
redemptions.

The aggregate outcome obtained with QL-investors switches at some critical value
of the fundamental, which we denote by 6. So, for § < 6, all agents redeem, while for
6 > 6, they all stay. Across multiple runs of the QL algorithms, we obtain the same
outcome. The implications of this are two-fold. First, QL-investors converge to equi-
librium outcomes. And second, they consistently converge to the same equilibrium
outcomes, implying that multiple equilibrium outcomes, for the same value of 6, do

not materialize.

Rationalizing the behavior of QL-investors. The behavior of QL-investors and
the cut-off, 6 can be rationalized using K-level reasoning, which is a model of bounded
rationality. In this framework, agents reason in layers: a level-0 agent chooses ran-
domly between redeeming and staying. A level-1 agent assumes others are level-0 and
best-responds to that assumption. A level-2 agent assumes others are level-1, and so
on.

The aggregate behavior observed among QL investors aligns with that of level-1
reasoners. That is, they behave as if they expect others to act randomly and adjust
their strategy accordingly. As a result, the critical threshold @ corresponds to the
fundamental value at which an agent is indifferent between redeeming and staying,
given the belief that others are equally likely to choose either action, i.e.,

Ry

0= (%)A—l év_:lo (A—l) (NfW(lJr)\)) RlR. (6)

w N-W
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Figure 6: Share of redemptions as a function of the fundamental # under full infor-
mation (no fundamental or payoff uncertainty).

The threshold strategy, redeem whenever 6 < é, delivers the risk-dominant equilib-
rium. Christianos et al. (2023) and Albrecht et al. (2024) highlight that independent
Q-learning algorithms converge to the risk-dominant equilibrium when they are un-
certain about the actions of others.'” Thus, QL-investors operate as if they all use

the same threshold strategy that delivers the unique risk-dominant equilibrium.

Rationalizing the behavior of LLM-investors. In contrast, LLM-investors strug-
gle to coordinate on equilibrium outcomes in the intermediate region. There are two
key steps. First, investors recognize that the return from staying depends on the
number of other investors who also stay. And for staying to be optimal, sufficiently
many other investors must also stay. Having determined this critical number of other
investors who must choose not to redeem for staying to be optimal, the next step
involves reasoning over the actions of the other investors.

To understand the reason behind this finding, Figure 7 plots the DAG for the
representative LLM-investor with § = 0.55 and A = 0.25. Since the prompts to LLM-

10T his result had also previously been established in the context of a two-player stag-hunt game
(Bearden, 2001).
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investors do not specify how they should form beliefs over the behavior of others, we
find that different investors use different models to form their beliefs. In one model,
the investor has an optimistic belief that all investors will coordinate on the Pareto-
optimal action, which is to stay. However, in the second model, the investor holds
a pessimistic belief that all others will choose to redeem. The other belief model
identified in the reasoning also leads to the conclusion that redeeming is optimal.
Our analysis thus implies that the failure to coordinate actions stems from LLM-
investors using different approaches to form their beliefs over the behavior of others.

We summarize our findings below.

Findings 1: In the absence of both fundamental uncertainty and payoff uncertainty,
both QL and LLM-investors coordinate on the theoretically predicted equilibria in the
dominance regions: all investors redeem for 8 < 6 and all agents stay for 6 > 6.
In the intermediate region, (QL-investors behave as if they are level-1 reasoners, and
so they all redeem whenever 6 < 0. Consequently, there are no multiple equilibria.
The LLM-investors fail to coordinate their actions in the intermediate region since

different investors use different models to form beliefs about the behavior of others.

B. Irrelevance of Payoff Uncertainty

We test Prediction 2 that payoff uncertainty is irrelevant for the aggregate outcome.
Figure 8 plots the results for the share of redemptions as a function of the fundamental
for both specifications of Ry(f) and for both QL and LLM-investors. We note two
key results. First, the outcome with LLM-investors is only slightly influenced by
the payoff uncertainty. In fact, the results with and without payoff uncertainty are,
for the most part, statistically indistinguishable. Second, QL-investors experience a
much stronger bias towards redeeming, even for values of # where staying is predicted

to be the strictly dominant action.

Rationalizing the behavior of LLM-investors. An explanation for this result
can be found by looking at the mental model that LLM-investors use to handle payoff
uncertainty. As Figure 9 illustrates, the investors use the concept of expected value
to treat the uncertainty, which renders the problem identical to that without payoff
uncertainty. Thus, LLM-investors’ ability to reason and contextualize delivers an

aggregate outcome in line with our prediction.
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Context 30 active investors Payoff depends on W

Find W_crit = 13.33

!

Belief about W
compared to threshold

Reasoning
. Optimistic: W=0 Pessimistic: W = 29 Probabilistic: W = 14.5
& beliefs
v v v
Action Stay Redeem Redeem

Figure 7: Reasoning structure for a representative LLM-investor. The DAG was
derived from the explanations provided in the experiment with 8 = 0.55.

23



= = = Lower dominance bound (¢) = LLM-investors (no p.u) =] LLM-investors (p.u)
=0~ QL-investors (no p.u) =0~ QL-investors (p.u) == == Upper dominance bound (9)
1 1 1 1

(=]
[\
1
~ B EEEEEEESEEESESSSE

o
~
o
W
o
=
e
2
o
o0
o
o
—

Fundamental (0)

Figure 8: Payoff uncertainty and redemptions vs. 6 (fundamentals known).

Rationalizing the behavior of QL-investors. An explanation for QL-investors’
bias towards redeeming can be found by exploring the properties of reinforcement
learning. Consider investor ¢ in episode ¢, currently in state 6¢;;, that chooses to
stay (action Ag). With probability 1 — 6, the fund’s return is zero and the investor
receives no reward, w(6,ag) = 0. Since the Q-learning update rule is @Q;+41(6;+,a) =

(1—)Qi+(bis,a) +a-m(0,a), a zero reward implies that

Qz‘,t+1(91,t; AS) = (1 - a)Qi,t(‘gi,ta CLS). (7)

Thus, each zero-return episode revises the Q-value downward. An accumulation of
such realizations, particularly during the exploration phase, causes the Q-values of
staying to remain systematically below the true expected value Rf, making QL-
investors pessimistic about the benefits of staying.

In contrast, the payoff for redeeming is fixed at R; and not subject to uncer-
tainty. Consequently, as the Q-values for redeeming rapidly converge to R;. Once
Qit(s,ar) > Qi(s, as), the investor increasingly chooses to redeem. This reduces op-
portunities to learn the true value of staying and further entrenches the bias towards

redeeming.
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Identify choices: Redeem
vs. Stay

—

| Stay yields uncertain payoff

—_—

Fund succeeds with Fund fails with probability
probability 8 -

1-6
Calculate payoff if Payoff is 0
successful

,, .

Redeem yields certain Calculate expected payoff
payoff R1 from staying

Handling
Compare certain vs.
Pa-yo'ff expected payoff
uncertainty

Figure 9: Inferred Mental model for how a representative LLM-investor handles payoff
Uncertainty. The DAG was derived from the explanations provided in the experiment
with 6 = 0.55.
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Figure 10: Frequency of coordination failures (neither “all redeem” nor “all stay”)
across fundamentals 6, with payoff but no fundamental uncertainty.

Payoff uncertainty can also hinder coordination among QL-investors. Figure 10
illustrates this by plotting the share of the last ten percent of episodes in which
investors fail to coordinate on either “all redeem” or “all stay”. For most values of 0,
investors achieve nearly perfect coordination. However, for a range of high 6 values,
which correspond to the intermediate redemption shares in Figure 8, the degree of
coordination falls sharply. This suggests that the intermediate levels of redemptions
stem from coordination failure rather than equilibrium multiplicity. Coordination
failure, in turn, arises because QL-investors fail to converge on a stable strategy
profile.

Figure 11 examines this convergence failure more closely by plotting the rolling
average of redemptions across episodes for several values of §. The shaded regions
indicate the standard deviation across independent training runs. For most 6, the
share of redemptions converges to one and the variation between runs decreases,
consistent with successful coordination on the “all redeem” equilibrium. But, for some
intermediate 6 values, the redemption shares exhibit a persistent upward drift and
substantial cross-run volatility. These patterns suggest that the “all stay” outcome

is unstable: repeated episodes in which agents receive zero payoff eventually push
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Figure 11: Evolution of redemptions across episodes with payoff uncertainty. The
figure shows the rolling average share of redemptions over twenty-five training rounds,
together with the associated standard deviations, for different values of 6.

them toward redeeming. In the limit, this dynamic implies that redemption becomes
dominant even when fundamentals are strong. Only at the extreme case of § = 1,
where staying yields a strictly positive payoff with certainty, does “all stay” emerge

as a stable outcome.

Findings 2: Introducing payoff uncertainty, while maintaining that there is no fun-
damental uncertainty, has no material impact on the aggregate behavior of LLM-
wnvestors. They use expected value as a solution concept to handle payoff uncertainty,
thus rendering the results indistinguishable from those without payoff uncertainty.
In contrast, payoff uncertainty introduces a strong bias towards redeeming for QQL-
investors. This bias persists well beyond the upper dominance bound, 6. Moreover,
for very high values of 6, we find intermediate values for the share of redemptions,

mainly driven by a very slow convergence to the “all redeem” outcome.

C. Global Games Equilibrium with Fundamental Uncertainty

With fundamental uncertainty, equilibrium behavior is characterized by the panic
threshold 6* and the average redemption rate w*(6*,6). Figure 12 compares the
simulated outcomes of QL and LLM-investors to the theoretical benchmark across

different levels of signal precision.
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Panel (a) shows the case of highly precise signals (n = 0.01). Here, both QL-
investors and LLM-investors closely track the theoretical prediction: redemption be-
havior switches sharply around the threshold 6*, consistent with the global games
equilibrium.

Panel (b) considers noisier signals (7 = 0.05). In this case, a divergence emerges.
LLM-investors continue to align with the theoretical prediction, coordinating their
redemption decisions around 6*. By contrast, QL-investors display a systematic bias
toward redeeming, leading to higher average redemption rates than theory would

predict.

Rationalizing the behavior of LLM-investors. Figure 13 illustrates the mental
model employed by LLM-investors under fundamental uncertainty. These investors
recognize that the environment is structurally equivalent to a canonical global games
setup and proceed to solve it accordingly. By reframing the problem in this way, and
(correctly) assuming that all other investors adopt the same signal threshold, they
eliminate the ambiguity of belief selection. The decision problem then reduces to
computing the threshold signal that makes the marginal investor indifferent between

redeeming and staying.

Rationalizing the behavior of QL-investors. Fundamental uncertainty induces
a bias toward redeeming among QL-investors, though less pronounced than under
payoff uncertainty. The mechanism is as follows. Because signals differ across in-
vestors, they may hold conflicting beliefs about the state of the world. This dis-
agreement—especially when signals are imprecise—translates into heterogeneous re-
demption decisions. Relative to the case without fundamental uncertainty, for any
realization of 6, the share of investors redeeming is higher, thereby reducing the payoft
from staying.

This dynamic is particularly evident when 6 ~ 6* and signal precision is low. Some
investors receive favorable signals suggesting that the fundamental is strong, while
others observe weaker signals pointing below the threshold. Those who redeem early
directly reduce the payoff to those who stay, which in turn depresses the Q-values
associated with staying. In this sense, fundamental uncertainty operates much like
payoff uncertainty in increasing the incentive to redeem early.

There is, however, a key distinction. Unlike under payoff uncertainty, learning in
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Figure 12: Share of redemptions as a function of the fundamental, with fundamental
uncertainty and no payoff uncertainty.

the presence of fundamental uncertainty does not converge to universal redemption.
Instead, consistent with the theoretical prediction w*(6,60*) € (0,1), the outcome
involves persistent partial redemptions: some investors redeem while others stay. As
shown in Figure 14, the rolling average of redemptions stabilizes at intermediate
levels, with the shaded confidence bands flattening over time. This suggests that, in
contrast to payoff uncertainty, the failure of QL-investors to coordinate fully is itself

a stable equilibrium outcome under fundamental uncertainty.

Findings 3: With fundamental uncertainty, LLM-investors use the global games so-

29



Context Private Signal x_i

v

Strategic Uncertainty:
Payoff depends on others
(W)

'

Assume Symmetric
Threshold Strategy x*

'

Indifference Point:
E[Payoff_Stay | x_i = x*] =

1.0
Reasonlng & Calculate x* based on E[W|
beliefs B=x*]~14.5
Decision:
Compare Signal x_i vs.
Threshold x*
X_i>x* X_i< x*
Action Action: Stay Action: Redeem

Figure 13: Inferred mental model for a representative LLM-investor with fundamental
uncertainty. This DAG was derived from the explanations provided in the experiment
with A =30, 6 = 0.55 and n = 0.05.
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Figure 14: Evolution of redemptions across episodes with fundamental uncertainty
(n = 0.05). The figure shows the rolling average share of redemptions over twenty-five
training rounds, together with the associated standard deviations, for different values
of 4.

lution concept and switch around the critical threshold, 0%, irrespective of the level of
signal precision. @QL-investors, in contrast, are more sensitive to the level of signal
precision, which induces a bias towards redeeming. Moreover, instances of partial re-
demptions for intermediate values of the fundamental are not driven by slow learning

dynamics and emerge as an equilibrium outcome.

D. Relationship between Fragility and Illiquidity

We conclude by examining how fragility depends on asset illiquidity, captured by the
parameter A\. Focusing on the case with fundamental uncertainty, our theoretical
benchmark defines fragility as the difference between the redemption share w*(6*,0)
and the first-best allocation, where all investors redeem if and only if § < §. Intu-
itively, this gap measures the excess redemptions arising from coordination failures.
In our simulations with QL and LLM-investors, we define fragility analogously: as
the deviation of the simulated redemption profile from the first-best allocation.
Figure 15 plots the simulation results for fragility as a function of A\. The two
panels consider high-precision signals (7 = 0.01) and low-precision signals (n = 0.05).

Since payoff uncertainty has been shown to be irrelevant for LLM-investors, we restrict
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Figure 15: Relationship between fragility and asset illiquidity.

attention to the case without payoff uncertainty. For QL-investors, by contrast, we
report results both with and without payoff uncertainty.

The results reveal a clear difference in behavior across the two types of investors.
The behavior of LLM-investors closely tracks the theoretical benchmark across both
levels of signal precision, both in the overall level of fragility and in the upward-sloping
relationship between fragility and illiquidity. This confirms the theoretical prediction
that greater illiquidity systematically increases fragility.

For QL-investors, the outcomes are more nuanced. In the absence of payoff un-

certainty, when signals are highly precise, the results are largely consistent with the
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theoretical benchmark, in line with the evidence reported in Figure 12a. With nois-
ier signals, however, QL-investors exhibit a stronger bias toward redemption, which
raises the level of fragility relative to the benchmark.

The introduction of payoff uncertainty amplifies this bias further, but the rela-
tionship between fragility and illiquidity now depends on signal precision. With high
precision, disagreement across investors is limited, and QL-investors tend to coordi-
nate on redeeming for almost all values of 0, leaving fragility largely insensitive to
A apart from the narrow range of fundamentals where convergence problems arise
(Figure 10). When signals are less precise, by contrast, partial redemptions persist
as a stable feature of the learning dynamics (Figure 14), which in turn produces a

stronger positive relationship between fragility and illiquidity.

Findings 4: The relationship between fragility and illiquidity for LLM-investors is
well approximated by the theoretical benchmark, irrespective of signal precision. In
contrast, for QQL-investors the relationship depends on both payoff uncertainty and
signal precision: payoff uncertainty amplifies their bias toward redemption, while low

signal precision strengthens the positive slope of fragility with respect to illiquidity.

V. Conclusion

We study how Al agents behave in canonical coordination problems (e.g., bank runs)
and, thus, their implications for financial stability. We find that equilibrium outcomes
are highly sensitive to the design of agents’ architectures. We show that Q-learning
investors systematically over-redeem relative to the theoretical cutoff, whereas LLM-
investors adhere more closely to the benchmark but coordinate less. Even when
individual agents pursue their objectives effectively, collective dynamics can still pro-
duce uniform and inefficient behavior, transforming small shocks into system-wide
runs and cascades.

Our contribution to the emerging literature on Al in finance is to show that
the design of Al systems matters. It is not merely the presence of Al in financial
decision-making, but how these agents are architected and how they interact with one
another that shapes outcomes. As Al use becomes increasingly prevalent in financial
domains, from trading algorithms to robo-advisors, it is essential to understand how
these agents behave both individually and in aggregate. The risks of Al-induced

coordination failures, such as bank runs and systemic crashes, are real, and may
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surpass human-driven risks because of Al’s speed, scale, and synchrony.

Our findings also raise broader questions about Al alignment in multi-agent con-
text. While much of the Al alignment literature focuses on aligning a single system
with human values, our results suggest that multi-agent alignment, or ensuring that
interactions among many Al agent cohorts lead to socially beneficial outcomes, is
equally important. In our model, each agent is individually aligned with its objective
(e.g., maximizing rewards), yet the group sometimes converges on globally inefficient
outcomes, much as humans do (Lore and Heydari, 2024). With AI, however, such

dynamics may emerge faster and more uniformly.

34



REFERENCES

Akata, Elif, Lion Schulz, Julian Coda-Forno, Seong Joon Oh, Matthias Bethge,
and Eric Schulz, 2023, Playing Repeated Games with Large Language Models,
arXiv:2305.16867.

Albrecht, Stefano V., Filippos Christianos, and Lukas Schéafer, 2024, Multi-Agent
Reinforcement Learning: Foundations and Modern Approaches (MIT Press, Cam-

bridge, MA).

Aldasoro, Inaki, Leonardo Gambacorta, Anton Korinek, Vatsala Shreeti, and Mer-
lin Stein, 2024, Intelligent Financial System: How Al is Transforming Finance,
Technical report, BIS Working Paper 1194.

Anthis, Jacy Reese, Ryan Liu, Sean M. Richardson, Austin C Kozlowski, Bernard
Koch, James Evans, Erik Brynjolfsson, and Michael Bernstein, 2025, LLM Social
Simulations are a Promising Research Method, arXiv preprint arXiv:2504.02234.

Banchio, Martino, and Giacomo Mantegazza, 2022, Artificial Intelligence and Spon-
taneous Collusion, in Proceedings of the 2022 ACM Conference on Economics and
Computation, 1-2.

Banchio, Martino, and Andrzej Skrzypacz, 2022, Artificial Intelligence and Auction
Design.

Bank of England, 2025, Financial Stability in Focus: Artificial Intelligence in the
Financial System, Technical report, Bank of England.

Bearden, J. Neil, 2001, The Evolution of Inefficiency in a Simulated Stag Hunt, Be-
havior Research Methods, Instruments, € Computers 33, 124-129.

Bebchuk, Lucian, and Itay Goldstein, 2011, Self-Fulfilling Credit Market Freezes,
Review of Financial Studies 24, 3519-3555.

Bhagwat, Vineet, J Anthony Cookson, Chukwuma Dim, and Marina Niessner, 2025,
The Market’s Mirror: Revealing Investor Disagreement with LLMs, FEB-RN Re-
search Paper .

Bybee, J. Leland, 2023, The Ghost in the Machine: Generating Beliefs with Large
Language Models, arXiv preprint arXiv:2305.02823.

Calvano, Emilio, Giacomo Calzolari, Vincenzo Denicolo, and Sergio Pastorello, 2020,
Artificial Intelligence, Algorithmic Pricing, and Collusion, American Economic Re-
view 110, 3267-3297.

Carlsson, Hans, and Eric Van Damme, 1993, Global Games and Equilibrium Selec-
tion, Econometrica 61, 989—-1018.

35



Chen, Qi, Itay Goldstein, Zeqiong Huang, and Rahul Vashishtha, 2024, Liquidity
Transformation and Fragility in the US Banking Sector, Journal of Finance 79,
3985-4036.

Chen, Qi, Itay Goldstein, and Wei Jiang, 2010, Payoff Complementarities and Fi-
nancial Fragility: Evidence from Mutual Fund Outflows, Journal of Financial Eco-
nomaics 97, 239-62.

Christianos, Filippos, Georgios Papoudakis, and Stefano V. Albrecht, 2023, Pareto
Actor-Critic for Equilibrium Selection in Multi-Agent Reinforcement Learning,
arXiv:2209.14344.

Colliard, Jean-Edouard, Thierry Foucault, and Stefano Lovo, 2025, Algorithmic Pric-
ing and Liquidity in Securities Markets, CEPR Discussion Paper No. 17606.

Cong, Lin William, Ke Tang, Jingyuan Wang, and Yang Zhang, 2023, AlphaPortfolio:
Direct Construction through Reinforcement Learning and Interpretable AI, SSRN
4124085.

Cont, Rama, and Wei Xiong, 2024, Dynamics of Market Making Algorithms in Dealer
Markets: Learning and Tacit Collusion, Mathematical Finance 34, 467-521.

Cook, Thomas R, and Sophia Kazinnik, 2025, Social Group Bias in Al Finance, arXiv
preprint arXiv:2506.17490.

Cook, Thomas R., Sophia Kazinnik, Anne Lundgaard Hansen, and Peter McAdam,
2023, Evaluating Local Language Models: An Application to Financial Earnings
Calls, Federal Reserve Bank of Kansas City Research Working Paper no. 23-12.

Danielsson, Jon, Robert Macrae, and Andreas Uthemann, 2022, Artificial Intelligence
and Systemic Risk, Journal of Banking € Finance 140, 106290.

Danielsson, Jon, and Andreas Uthemann, 2025, Artificial Intelligence and Financial
Crises, Journal of Financial Stability, forthcoming.

Deloitte, 2024, Retail investors may soon rely on generative Al tools for financial
investment advice.

Diamond, D., and P. Dybvig, 1983, Bank Runs, Deposit Insurance and Liquidity,
Journal of Political Economy 91, 401-19.

Dou, Winston Wei, Itay Goldstein, and Yan Ji, 2025, Al-powered Trading, ALgorith-
mic Collusion, and Price Efficiency, NBER Working Paper No. 34054.

Fedyk, Anastassia, Ali Kakhbod, Peiyao Li, and Ulrike Malmendier, 2024, Al and
Perception Biases in Investments: An Experimental Study, Available at SSRN
4787249.

36



Financial Stability Board, 2024, The Financial Stability Implications of Artificial
Intelligence, Technical report, Financial Stability Board, Report to the G20.

Financial Times, 2025, The fund manager of the future might just be a machine,
https://www.ft.com/content/ad12a0ec-9d6d-4ee7-83b7-643415f1a373.

Foley-Fisher, Nathan C., Borghan Narajabad, and Stephane H. Verani, 2020, Self-
fulfilling Runs: Evidence from the U.S. Life Insurance Industry, Journal of Political
Economy 128, 3520-3678.

Gao, Shen, Yuntao Wen, Minghang Zhu, Jianing Wei, Yuhan Cheng, Qunzi Zhang,
and Shuo Shang, 2024, Simulating Financial Market via Large Language Model
Based Agents, arXiv preprint arXiv:2406.19966.

Goldstein, Itay, Hao Jiang, and David T Ng, 2017, Investor Flows and Fragility in
Corporate Bond Funds, Journal of Financial Economics 126, 592—613.

Goldstein, Itay, and Ady Pauzner, 2005, Demand Deposit Contracts and the Proba-
bility of Bank Runs, Journal of Finance 60, 1293-1327.

Gorton, Gary B., Elizabeth C. Klee, Chase P. Ross, Sharon Y. Ross, and Alexan-
dros P. Vardoulakis, 2025, Leverage and Stablecoin Pegs, Journal of Financial and
Quantitative Analysis .

Hansen, Anne Lundgaard, John J Horton, Sophia Kazinnik, Daniela Puzzello, and
Ali Zarifhonarvar, 2024, Simulating the Survey of Professional Forecasters, SSRN
Working Paper.

Horton, John J., 2023, Large Language Models as Simulated Economic Agents: What
Can We Learn from Homo Silicus?, NBER Working Paper 31282.

Kazinnik, Sophia, 2023, Bank Run, Interrupted: Modeling Deposit Withdrawals with
Generative AI, SSRN Working Paper.

Leitner, Georg, Jaspal Singh, Anton van der Kraaij, and Balazs Zsamboki, 2024, The
Rise of Artificial Intelligence: Benefits and Risks for Financial Stability, Technical
report, European Central Bank, Financial Stability Report.

Liu, Xuewen, and Antonio S. Mello, 2011, The Fragile Capital Structure of Hedge
Funds and the Limits to Arbitrage, Journal of Financial Economics 102, 491-506.

Lopez-Lira, Alejandro, 2025, Can Large Language Models Trade? Testing Financial
Theories with LLM Agents in Market Simulations, SSRN Working Paper.

Lore, Nunzio, and Babak Heydari, 2024, Strategic Behavior of Large Language Models
and the Role of Game Structure versus Contextual Framing, Scientific Reports 14,
18490.

37


https://www.ft.com/content/ad12a0ec-9d6d-4ee7-83b7-643415f1a373

MIT  Sloan, 2024, Can  generative ai  provide trusted finan-
cial advice?, https://mitsloan.mit.edu/ideas-made-to-matter/
can-generative-ai-provide-trusted-financial-advice.

Morris, Stephen, and Hyun Song Shin, 1998, Unique Equilibrium in a Model of Self-
Fulfilling Currency Attacks, American Economic Review 88, 587-597.

Morris, Stephen, and Hyun Song Shin, 2002, Measuring Strategic Uncertainty,
Manuscript.

Nvidia, 2025, AI On: How Financial Services Companies Use Agentic Al to Enhance
Productivity, Efficiency and Security.

Reinhart, Carmen M., and Kenneth S. Rogoff, 2009, This Time Is Different: FEight
Centuries of Financial Folly (Princeton University Press, Princeton, NJ).

Reuters, 2025, After DeepSeek, Chinese fund managers beat High-Flyer’s path
to Al, https://www.reuters.com/technology/artificial-intelligence/
after—-deepseek-chinese-fund-managers-beat-high-flyers-path-ai-2025-03-14.

Shabsigh, Ghiath, and El Bachir Boukherouaa, 2023, Generative Artificial Intelligence
in Finance: Risk Considerations, Fintech Note 2023/006, International Monetary
Fund.

Yang, Hao, 2024, AT Coordination and Self-fulfilling Financial Crises, Working Paper.

Zarithonarvar, Ali, 2024, Experimental Evidence on Large Language Models, SSRN
Working Paper.

38


https://mitsloan.mit.edu/ideas-made-to-matter/can-generative-ai-provide-trusted-financial-advice
https://mitsloan.mit.edu/ideas-made-to-matter/can-generative-ai-provide-trusted-financial-advice
https://www.reuters.com/technology/artificial-intelligence/after-deepseek-chinese-fund-managers-beat-high-flyers-path-ai-2025-03-14
https://www.reuters.com/technology/artificial-intelligence/after-deepseek-chinese-fund-managers-beat-high-flyers-path-ai-2025-03-14

Appendices

Appendix A. Proofs

Proof of Proposition 1. For extreme values of the fundamental 6, investors have
a dominant action. We start with the low values of 6. Irrespective of what other
investors choose, redeeming at ¢t = 1 is optimal for an investor when even the highest
payoff they can accrue at ¢t = 2, which corresponds to the payoff accrued if no other
investors redeem, is smaller than R;. Formally, this is the case when Ry RO < Ry,
that is, when 0 < 6 = %.

Symmetrically, staying until ¢ = 2 is a dominant action when even the worst payoft
that an investor expects to receive at the final date, which corresponds to the payoff
accrued if all A — 1 investors redeem, is larger than R;. Formally, this is the case

N—(A-1) . o1 N—(A-1)
When RlRem > Rl that 1S When 6) > 9 = Em

When 6 € [6,60], both redeeming at t = 1 and not redeeming are equilibria. If
an investor expects others to redeem, it is optimal for them to redeem as well, since
staying until ¢ = 2 would yield a lower payoff than R;. Conversely, if no one else
redeems at t = 1, it is optimal not to redeem either, as the payoff from staying,
R1 RO, exceeds R; for all § > §. This completes the proof. n

Proof of Proposition 2. The proof adapts the standard approach in the global
game literature (Goldstein and Pauzner, 2005; Chen et al., 2010) to the case with a
discrete number of players. The arguments in their proof establish that there is a
unique equilibrium in which investors redeem at t = 1 if and only if the signal they
receive is below a common threshold 6*, which is the signal at which an investor is
indifferent between redeeming at t = 1 and ¢t = 2 given what he or she believes about
the signals received by other investors and, in turn, their behaviors.

We start by characterizing investors’ decisions in two extreme ranges of fundamen-
tals where investors have a dominant action. These two ranges correspond to the one
characterized in Proposition 1. When 6 < § redeeming at ¢ = 1 is a dominant action
and we refer to this range as the lower dominance region. When 6 > 6, redeeming
at t = 2 is the dominant action and we refer to this range as the upper dominance
region.

Consider now the intermediate region where § € [0,6]. Assume that investors
behave according to a threshold strategy: they redeem their shares if they receive a
signal below §* and stay until ¢ = 2 otherwise.!! Given that the signal is uniformly
distributed over the interval [—n, +7], the probability of receiving a signal below 6* is
G*_Q—ZJ“Z. Building on this, we can compute the share of investors receiving the signal

"This comes at no loss of generality, as Goldstein and Pauzner (2005) show that in this game
every equilibrium strategy is a threshold strategy.
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below the cutoff, which is given by
= 6" — 0+
w = ;:1 {0; < 0"} ~ Binomial <A, T”) : (A1)

It follows that the probability that W out of A investors have received a signal below
0* is given by:

- () () (-5

Using the above, we can compute the probability that the investor receiving the signal
0* assigns to n out of A — 1 investors redeeming at t = 1 as:

A— 1)
( 0*+n 0* — @ Wi — g — A-1-W
w / ( +1)" ( 0 n) " (A3)
277 0*—n (277)
As shown in Morris and Shin (2002), this probability is equal to ; +j‘_1. Hence, the

indifference condition that characterizes the run threshold 6* reads:

S LN W1+

e A N-W

RiRO = Ry, (A4)

which gives the expression (2) in the proposition. O

Proof of Proposition 3. The proof is straightforward and entails replicating the
analysis of the previous two propositions using Ry(#) as specified in (4). Since for
any 6, the return is simply R and investors are risk neutral, all thresholds are exactly
as in the previous two propositions. ]
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In this appendix, we provide the prompts used to generate the DAGs from the output
json files. Prompt 4 provides the prompt used to produce the DAG with (i) a single
investor (Figure 5), (ii) multiple investors and no payoff uncertainty (Figure 7), and
(iii) multiple investors with fundamental uncertainty (Figure 13). To generate the
DAG to depict the mental model used by LLMs to handle payoff uncertainty (Figure

Appendix B. Prompts to generate DAGs

9), we used Prompt 5.

10

11

12

13

You are given a JSON file from a simulation. The file
contains: "actions": O = stay, 1 = redeem, "
1lm_responses" and "explanations": reasoning text,
parameters such as 6, R, A, N, number of active/passive

investors. Your task is to produce a Mermaid DAG that
cleanly summarizes the reasoning process for a typical
investor.

Instructions:
Include three main sections only:

- Context: key parameters, information and setup

- Reasoning & belief: payoff comparison and threshold
calculation

- Action: belief evaluation and aggregated final actions.
Show branching at the decision node only if needed:
Optimistic (W < Wcrit), Pessimistic (W > Wcrit),

Uncertain (W ~ Wcrit).

Keep node labels short (< 10 words).

Prompt 4: Basic DAG generation prompt
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1 You are given a JSON file from an experiment with payoff
uncertainty. The file contains explanations for the
decisions. Extract the steps for how investors handle
the payoff uncertainty. Summarize those steps in a
Mermaid DAG under a single section titled ¢ ‘Handling
Payoff Uncertainty’’. Each node should include <10
words. Do not consider how strategic uncertainty is
handled.

Prompt 5: Prompt to generate DAG depicting handling of payoff uncertainty
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Appendix C. Fund illiquidity and payoff
uncertainty at date 1

In this section, we relax the assumption concerning fund illiquidity and assume that
A > 1%\ This implies that in the presence of a sufficiently large number of early

redemptions, i.e., when W > W = 11}: 5 » the fund liquidates its entire portfolio at date
1 and defaults. In this circumstance, we assume that early redeeming investors receive
nothing due to the presence of full bankruptcy costs. This modification relative to
the benchmark model introduces payoff uncertainty at date 1 and, thus, allows us to
check whether our results concerning to the Q-algorithms’ behavior in the presence
of payoff uncertainty are robust.'” As it will become useful for the characterization
of the case with fundamental uncertainty, in line with the literature, e.g., Goldstein
and Pauzner (2005), we assume that when # = 1, A = 0 and the liquidation value of
the fund’s investment jumps to R. This implies that when ¢ = 1, it is a dominant
action for the investors not to redeem at date 1.

To isolate the role of payoff uncertainty at date 1, we characterize the equilibrium
assuming that the bank’s investment returns Rf at date 2, i..e, no payoff uncertainty
at the final date. We proceed as in the main text, deriving first the equilibrium in
the absence of fundamental uncertainty (i.e., 6 is observable) and then assuming that
investors receive an imperfect private signal on 6 of the form 6; = 0 + ¢;, with ¢; ~
[—n, +n]. The following proposition characterizes the equilibria in the two instances.

Proposition 4: When the fundamentals 6 are observable, all investors redeem att = 1
when 0 < 6 = }% and stay until t = 2 when @ = 1. In the range 6 € (0,1), redeeming
at date 1 and at date 2 are both equilibria.

When the fundamentals 6 are not observable, model has a unique symmetric Bayes-
Nash equilibrium in threshold strategies that is characterized by a critical signal

w
0 = — 2w=0 : (C1)
w
N— W +A
> SR
wW=0

such that an investor will redeem their share at t = 1 if and only if their signal is
below 6*.

Proof. The proof follows closely that of Proposition 1 and 2, with the only difference
that, in the case of fundamental uncertainty, the indifference condition giving 6* is

12Notice that the assumption of full bankruptcy costs give rise to a payoff structure that is akin
to the case where early redeeming investors are repaid according to a sequential service schedule.
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equal to:

w w
1IN —W(l+ ) 1
1 ~ ST 2R, 2
gy R W§Oj TR (C2)

The p-dominance threshold in the presence of payoff uncertainty at ¢ = 1 0gp
solves u; = uo evaluated at p = %, where

A
W=0

and
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